Remove ads
число, которое можно представить обыкновенной дробью , где числитель — целое число, а знаменатель — натуральное число Из Википедии, свободной энциклопедии
Рациона́льное число́ (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби , где — целое число, а — натуральное[1]. Пример: , где , а .
Целые числа также могут быть записаны в виде дроби, например:
Поэтому целые числа также являются рациональными. Таким образом, множество рациональных чисел представляет собой расширение множества целых чисел путём добавления к ним дробей.
Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что целых чисел недостаточно и необходимо ввести понятие доли: половины, трети, четверти и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
Множество рациональных чисел обозначается (от лат. quotient, «частное») и может быть записано в таком виде:
При этом оказывается, что разные записи могут представлять одну и ту же дробь, например, и , (все дроби, которые можно получить друг из друга умножением или делением числителя и знаменателя на одно и то же натуральное число, представляют одно и то же рациональное число). Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей со взаимно простыми целым числителем и натуральным знаменателем:
Здесь — наибольший общий делитель чисел и .
Множество рациональных чисел является естественным обобщением множества целых чисел. Легко видеть, что если у рационального числа знаменатель , то является целым числом.
Множество рациональных чисел располагается всюду плотно на числовой оси: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел имеет счётную мощность (то есть все его элементы можно перенумеровать). Со времён древних греков известно о существовании чисел, не представимых в виде дроби: они доказали в частности, что не рациональное число. Недостаточность рациональных чисел для выражения всех величин привела в дальнейшем к понятию вещественного числа. В отличие от множества вещественных чисел (которое соответствует одномерному пространству), множество рациональных чисел имеет меру нуль.
Формально рациональные числа определяются как множество классов эквивалентности пар по отношению эквивалентности , если . При этом операции сложения и умножения определяются следующим образом:
Из определения видно, что никакие операции сложения или умножения не приводят к появлению пары вида
Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Правильные дроби представляют рациональные числа, по модулю меньшие единицы. Дробь, не являющаяся правильной, называется неправильной и представляет рациональное число, большее или равное единице по модулю.
Неправильную дробь можно представить в виде суммы целого числа и правильной дроби, называемой смешанным числом. Например, . Подобная запись (с пропущенным знаком сложения), хотя и употребляется в элементарной арифметике, избегается в строгой математической литературе из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.
Высота обыкновенной дроби — это сумма модуля числителя и знаменателя этой дроби. Высота рационального числа — это сумма модуля числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу[2].
Например, чтобы узнать высоту дроби , нужно сначала из неё получить несократимую дробь. Несократимая дробь будет выглядеть так: . Потом нужно сложить модуль числителя и знаменатель: . Значит высота дроби равна .
Термин дробное число (дробь) иногда[уточнить] используется как синоним к термину рациональное число, а иногда синоним любого нецелого числа. В последнем случае дробные и рациональные числа являются разными вещами, так как тогда нецелые рациональные числа — всего лишь частный случай дробных.
Множество рациональных чисел удовлетворяют шестнадцати основным свойствам, которые легко могут быть получены из свойств целых чисел.[3]
Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.
Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно. Для этого достаточно привести алгоритм, который нумерует рациональные числа, то есть устанавливает биекцию между множествами рациональных и натуральных чисел. Примером такого построения может служить следующий простой алгоритм. Составляется бесконечная таблица обыкновенных дробей, на каждой -ой строке в каждом -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где — номер строки таблицы, в которой располагается ячейка, а — номер столбца.
Полученная таблица обходится «змейкой» по следующему формальному алгоритму.
Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.
В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. То есть дроби ставится в соответствие число 1, дроби — число 2, и т. д. Нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.
Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, поставив в соответствие каждому рациональному числу противоположное ему. Таким образом множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.
Существуют и другие способы занумеровать рациональные числа. Например, воспользовавшись такими структурами как дерево Калкина — Уилфа, дерево Штерна — Броко или ряд Фарея.
Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, так как на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел (ведь между любыми двумя натуральными числами находится бесконечное множество рациональных). На самом деле это не так, и натуральных чисел хватает, чтобы занумеровать все рациональные.
В геометрии следствием так называемой аксиомы Архимеда (в более общем понимании, чем упомянуто выше) является возможность построения сколь угодно малых (то есть, коротких) величин, выражаемых рациональными числами вида . Этот факт создаёт обманчивое впечатление, что рациональными числами можно измерить вообще любые геометрические расстояния. Легко показать, что это не верно.
Из теоремы Пифагора известно, что гипотенуза прямоугольного треугольника выражается как квадратный корень суммы квадратов его катетов. Т. о. длина гипотенузы равнобедренного прямоугольного треугольника с единичным катетом равна , то есть числу, квадрат которого равен 2.
Если допустить, что число представляется некоторым рациональным числом, то найдётся такое целое число и такое натуральное число , что , причём дробь несократима, то есть числа и — взаимно простые.
Если , то , то есть . Следовательно, число чётно, но произведение двух нечётных чисел нечётно, что означает, что само число также чётно. А значит найдётся натуральное число , такое что число можно представить в виде . Квадрат числа в этом смысле , но с другой стороны , значит , или . Как уже показано ранее для числа , это значит, что число — чётно, как и . Но тогда они не являются взаимно простыми, так как оба делятся на 2. Полученное противоречие доказывает, что не есть рациональное число.
Из вышесказанного следует, что существуют отрезки на плоскости, а, значит, и на числовой прямой, которые не могут быть измерены рациональными числами. Это приводит к возможности расширения понятия рациональных чисел до вещественных.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.