Loading AI tools
coleção matemática bem definida de objetos distintos Da Wikipédia, a enciclopédia livre
Conjunto é um conceito-chave primitivo[nota 1] do ramo matemático da Teoria dos Conjuntos.[1] A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos que compõem o conjunto A, dizemos que x pertence a A.[2]
Nos conjuntos, a ordem e a quantidade de vezes que os elementos estão listados na coleção não é relevante. Em contraste, uma coleção de elementos na qual a multiplicidade, mas não a ordem, é relevante, é chamada multiconjunto. Dizemos que dois conjuntos são iguais se, e somente se, cada elemento de um é também elemento do outro. [3]
Um conjunto é considerado um dos conceitos mais básicos da matemática, sendo o elemento principal da teoria dos conjuntos.
É possível descrever o mesmo conjunto de três maneiras diferentes, por:
A notação padrão em Matemática lista os elementos separados por vírgulas e delimitados por chaves (o uso de "parênteses" ou "colchetes" é incomum e, em determinados contextos, considerado incorreto). Um certo conjunto A, por exemplo, poderia ser representado como:
Como a ordem não importa em conjuntos, isso é equivalente a escrever, por exemplo: Um certo conjunto A também fica definido (ou determinado, ou caracterizado) quando se dá uma regra que permita decidir se um objeto arbitrário pertence ou não a A. Por exemplo, a frase "B é o conjunto dos triângulos retângulos" define perfeitamente o conjunto B, já que permite decidir se um objeto qualquer é ou não elemento de B.[2] O mesmo conjunto A do parágrafo anterior poderia ser representado por uma regra:
ou ainda:
Note que as propriedades ou descrições de um conjunto são representadas dentro das {}, após os elementos e separadas destes por : ou por |. Também é possível representar graficamente os conjuntos. O Diagrama de Venn-Euler é a representação gráfica dos conjuntos, através de entidades geométricas.
Se e são conjuntos e todo o elemento pertencente a também pertence a , então o conjunto é dito um subconjunto do conjunto , denotado por . Note que esta definição inclui o caso em que e possuem os mesmos elementos, isto é, são o mesmo conjunto (, é equivalente a e ). Se e ao menos um elemento pertencente a não pertence a , então é chamado de subconjunto próprio de , denotado por . Todo conjunto é subconjunto dele mesmo, entretanto não se enquadra na definição de subconjunto próprio, e é chamado de subconjunto impróprio.
É o conjunto que não possui elemento. Ele é representado pelos símbolos ou . Nunca use para demonstrar um conjunto vazio esta representação , pois ela indica que há um elemento dentro deste conjunto o que o torna um conjunto unitário. Todo conjunto também possui como subconjunto o conjunto vazio representado por ou .
Podemos mostrar isto supondo que se o conjunto vazio não está contido no conjunto em questão, então o conjunto vazio deve possuir um elemento ao menos que não pertença a este conjunto. Como o conjunto vazio não possui elementos, isto não é possível. Como todos os conjuntos vazios são iguais, uns aos outros, é permissível falar de um único conjunto sem elementos.
Se um conjunto tem elementos, onde é um número natural (incluindo o 0), então diz-se que o conjunto é um conjunto finito com cardinalidade, ou número cardinal .
Mesmo se o conjunto não possui um número finito de elementos, pode-se definir a cardinalidade, graças ao trabalho desenvolvido pelo matemático Georg Cantor. Neste caso, a cardinalidade poderá ser (aleph-0),
Nos dois casos a cardinalidade de um conjunto é denotada por . Se para dois conjuntos e é possível fazer uma relação um-a-um entre seus elementos, então
O conjunto de todos os subconjuntos de um conjunto dado é chamado de conjunto potência (ou conjunto das partes) de , denotado por O conjunto potência é uma álgebra booleana sobre as operações de união e interseção.
Sendo o conjunto dado finito, com elementos, prova-se que o número de subconjuntos, isto é, o número de elementos do conjunto potência ou conjunto das partes de é ou seja, a cardinalidade do conjunto das partes de é igual a Como existe uma bijecção entre o conjunto das partes de e o conjunto é usual representar-se por
O Teorema de Cantor estabelece que
O produto cartesiano de dois conjuntos A e B é o conjunto de pares ordenados:
A soma ou união disjunta de dois conjuntos A e B é o conjunto
De maneira semelhante ao que ocorre com os números, também existem operações matemáticas com conjuntos. Nos exemplos são utilizados diagramas de Venn para ilustrar.
Operação | Operador | Definição | Exemplo |
---|---|---|---|
União | A união (ou reunião) de dois conjuntos e é o conjunto composto dos elementos que pertencem a um dos conjuntos ou ou a ambos. A união de N conjuntos é o conjunto formado pelos elementos que pertencem ao menos a um dos conjuntos . A união entre dois conjuntos pode ser definida formalmente por . | ||
Interseção | A interseção de dois conjuntos e é o conjunto composto dos elementos que pertencem simultaneamente aos dois conjuntos e . A definição formal da interseção é . | ||
Complementar | ou | O complemento (ou ) de um conjunto se refere aos elementos que não estão no conjunto . Normalmente, o complementar se trata de maneira relativa a um conjunto universo , isto é, o complemento de em relação a . É o mesmo que . O conjunto é formado pelos elementos de que não pertencem a , formalmente definida por | |
Diferença | ou | A diferença (ou ) entre dois conjuntos e é o conjunto dos elementos que pertencem a e que não pertencem a A diferença entre dois conjuntos pode ser definida formalmente por . |
Em uma expressão que envolve mais de dois conjuntos, deve-se seguir um conjunto de regras[5] para estabelecer a ordem de execução das operações:
Nota: Nesta seção, a, b e c são números naturais, enquanto r, s, t e u são números reais.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.