Najlepsze pytania
Chronologia
Czat
Perspektywa

Zbiór wypukły

pojęcie geometrii i algebry liniowej Z Wikipedii, wolnej encyklopedii

Zbiór wypukły
Remove ads
Remove ads

Zbiór wypukłypodzbiór pewnej przestrzeni zawierający wraz z dowolnymi dwoma jego punktami odcinek je łączący[1]. Przestrzeń może być np. euklidesowa, afiniczna lub liniowa (tj. wektorowa); we wszystkich przypadkach wymaga się, by ciało skalarów było uporządkowane, zwykle jest to ciało liczb rzeczywistych.

Thumb
Pięciokąt wypukły.
Thumb
Przykłady zbiorów, które nie są wypukłe.

Formalna definicja

Zbiór przestrzeni liniowej nad ciałem uporządkowanym nazywa się wypukłym, jeżeli

Spotyka się również równoważne warianty tej definicji, np.:

W przestrzeni afinicznej ostatni warunek ma postać

Remove ads

Przykłady

Przykładami zbiorów wypukłych na płaszczyźnie euklidesowej są: cała płaszczyzna, półpłaszczyzna, koło, kwadrat, trójkąt, odcinek, prostokąt, każdy wielokąt foremny. Kąt płaski jest wypukły wtedy i tylko wtedy, gdy jego miara jest mniejsza bądź równa mierze kąta półpełnego (w tym kąt prosty) lub równa mierze kąta pełnego (zob. klasyfikacja kątów).

Zbiór zawierający pojedynczy punkt również jest wypukły, przy czym punkt ten jest ekstremalny. Punktami ekstremalnymi są również wierzchołki wielokątów wypukłych, podobnie jak każdy punkt okręgu danego koła. W przestrzeni trójwymiarowej zbiorami wypukłymi są m.in. kula, sześcian (foremny), stożek, czy prostopadłościan.

Część wspólna zbiorów wypukłych jest zbiorem wypukłym, ich suma nie musi być wypukła.

Dla każdego wielościanu wypukłego zachodzi twierdzenie Eulera o wielościanach, które mówi, że suma jego wierzchołków oraz ścian jest równa liczbie jego krawędzi powiększonej o dwa.

Przykładami zbiorów niewypukłych są: każdy zbiór skończony punktów o co najmniej dwóch elementach, każdy okrąg, sfera, torus.

Remove ads

Zobacz też

Przypisy

Linki zewnętrzne

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads