Macierz ortogonalna

typ rzeczywistej macierzy kwadratowej Z Wikipedii, wolnej encyklopedii

Macierz ortogonalnamacierz kwadratowa o elementach będących liczbami rzeczywistymi spełniająca równość:

gdzie oznacza macierz jednostkową wymiaru oznacza macierz transponowaną względem

Uogólnieniem pojęcia na macierze zespolonemacierze unitarne, tzn. macierz ortogonalna jest macierzą unitarną o wyrazach rzeczywistych[1].

Macierze ortogonalne wymiaru n × n reprezentują np. przekształcenia ortogonalne (np. obroty, odbicia) n-wymiarowej przestrzeni euklidesowej[2].

Warunki równoważne ortogonalności macierzy

Niech Następujące warunki są równoważne:

  1. jest macierzą ortogonalną[3]
  2. kolumny macierzy traktowane jako wektory przestrzeni tworzą bazę ortonormalną[4]
  3. wiersze macierzy traktowane jako wektory przestrzeni tworzą bazę ortonormalną[4]
  4. kolumny macierzy traktowane jako wektory przestrzeni tworzą układ ortonormalny[5]
  5. wiersze macierzy traktowane jako wektory przestrzeni tworzą układ ortonormalny[6]
  6. gdzie oznacza macierz jednostkową wymiaru a oznacza macierz transponowaną względem [7][8]
  7. gdzie oznacza macierz jednostkową wymiaru a oznacza macierz transponowaną względem [9]
  8. dla każdej bazy ortonormalnej przestrzeni układ jest bazą ortonormalną przestrzeni [10]
  9. macierz A jest odwracalna i gdzie oznacza macierz odwrotną do macierzy a oznacza macierz transponowaną względem [11][12]
  10. gdzie jest deltą Kroneckera[13]
  11. gdzie jest deltą Kroneckera[14]
  12. [15]
  13. [16]

Własności macierzy ortogonalnych

  • Wyznacznik macierzy ortogonalnej jest równy 1 lub –1[17].
  • Jeśli są macierzami ortogonalnymi tego samego rzędu, to ich iloczyn też jest macierzą ortogonalną[18].
  • Macierz odwrotna do macierzy jest jej macierzą transponowaną, tj. Macierz ta też jest ortogonalna.
  • Macierz jednostkowa jest ortogonalna.

Grupy O(n) oraz SO(n)

Grupa ortogonalna stopnia n

Z własności zbioru macierzy ortogonalnych stopnia n wynika, że zbiór ten tworzy grupę z mnożeniem macierzy jako działaniem grupowym[19][20], grupę tę nazywa się grupą ortogonalną stopnia n i oznacza się symbolem lub [21]. Grupa ta jest podgrupą ogólnej grupy liniowej [21][22].

Specjalna grupa ortogonalna

Specjalna grupa ortogonalna (lub grupa unimodularna ) – to grupa macierzy ortogonalnych stopnia n, których wyznacznik jest równy jeden[21][23]. Grupa ta jest podgrupą grupy ortogonalnej [21][23].

Przykłady

Podsumowanie
Perspektywa

Poniżej podano przykłady macierzy ortogonalnych. Łatwo można to sprawdzić, wykonując obliczenia iloczynów skalarnych kolumn (traktowanych jako wektory), że są one wzajemnie ortogonalne; to samo dotyczy wierszy.

  • Macierz jednostkowa dowolnego rzędu jest macierzą ortogonalną[24], np.
  • [25][26]
  • [25][27]
  • [28][29][30][31][32]

Zobacz też

Inne:

Przypisy

Bibliografia

Linki zewnętrzne

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.