Remove ads
struktura algebraiczna, zwykle definiowana jako skończona Z Wikipedii, wolnej encyklopedii
Grupa permutacji – grupa wszystkich permutacji ustalonego zbioru skończonego z działaniem składania pełniącym rolę działania grupowego (i tożsamością jako elementem neutralnym; element odwrotny dany jest jako permutacja odwrotna). Rząd (tj. liczba elementów) grupy permutacji zbioru -elementowego wynosi (zob. silnia).
Grupy permutacji były punktem wyjścia teorii grup: zaczęto je badać w związku z poszukiwaniem ogólnych rozwiązań równań algebraicznych. Grupy symetryczne o więcej niż dwóch elementach nie są przemienne (abelowe), a o więcej niż czterech elementach nie są rozwiązalne: zgodnie z teorią Galois jest to powód, dla którego równania algebraiczne stopnia większego niż cztery nie mają rozwiązań ogólnych (tzw. twierdzenie Abela-Ruffiniego).
Ogólnie każdą grupę można rozumieć jako grupę permutacji elementów zbioru, na którym została określona (tzw. twierdzenie Cayleya): w związku z tym wszystkie wyniki dotyczące grup permutacji dotyczą również dowolnych grup skończonych[a].
Grupy permutacji bywają nazywane również grupami symetrycznymi, choć termin ten należy raczej traktować ogólnie; niektóry autorzy[1] „grupami permutacji” nazywają podgrupy właściwe grupy symetrycznej (tu: wszystkich permutacji danego zbioru). Niekiedy używa się również nazwy grupa bijekcji (funkcji wzajemnie jednoznacznych), jednak zwykle nazwa ta odnosi się do grup przekształceń dowolnych zbiorów (w tym nieskończonych).
Zwykle[2][3][4] grupy permutacji zbioru -elementowego oznacza się symbolem grupy bijekcji zbioru oznaczane są często[2] choć stosuje się też inne oznaczenia, np. [5], dla grup bijekcji, czy [5] dla grupy permutacji.
Jeśli jest zbiorem pustym, to istnieje jedno trywialne uporządkowanie tego zbioru: (permutacja pusta). Gdy jest zbiorem jednoelementowym, to grupa permutacji znowu zawiera wyłącznie tylko permutację trywialną Jeżeli jest zbiorem dwuelementowym, to istnieją tylko dwie permutacje tego zbioru: (tożsamość) oraz (transpozycja).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.