Loading AI tools
Zbiór matematyczny zawarty w innym zbiorze Z Wikipedii, wolnej encyklopedii
Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem[1], zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.
Niech będą zbiorami. Jeżeli każdy element jest jednocześnie elementem to zbiór nazywa się podzbiorem zbioru [2][3][4]. W zapisie logicznym:
Jeżeli jest podzbiorem to sam zbiór nazywa się nadzbiorem zbioru [3] i oznacza
Jeżeli każdy element zbioru należy do i jednocześnie każdy element zbioru należy do czyli oraz to i dla zaznaczenia tego faktu taki podzbiór zbioru nazywa się niewłaściwym. Zatem cały zbiór jest swoim podzbiorem niewłaściwym, a więc W przeciwnym wypadku, czyli gdy oraz zbiór nazywa się podzbiorem właściwym zbioru [3] i oznacza Podobnie ma się rzecz z nadzbiorami.
Do oznaczenia podzbioru bądź nadzbioru niekiedy wykorzystuje się jedynie symbole [5] oraz a bycie podzbiorem (nadzbiorem) właściwym jest wtedy zaznaczane obok. Występuje to m.in. w starszych pozycjach, np. w podręcznikach Kuratowskiego[2][4] i Rasiowej[3]. Z czasem jednak zaczęto korzystać ze znaków i na oznaczenie podzbiorów i nadzbiorów, również niewłaściwych (z połączenia poprzednich znaków ze znakiem równości), pozostawiając poprzednie symbole dla przypadków właściwych[uwaga 1][6][7].
Część autorów przyjęła nową konwencję, inni pozostali przy dotychczasowej. W wyniku tego znaczenie symboli i stało się nieprecyzyjne. Z czasem wprowadzono symbole i na oznaczenie podzbiorów i nadzbiorów właściwych (połączenie ze znakiem nierówności), które jednoznacznie określają podzbiory i nadzbiory właściwe. W celu uniknięcia wątpliwości w artykule tym konsekwentnie stosowane są symbole zawierające znaki równości i nierówności.
Dla dowolnego zbioru prawdziwe jest zdanie:
Zbiór pusty jest podzbiorem właściwym każdego zbioru oprócz siebie.
Poza tym dla dowolnych zbiorów zachodzą następujące fakty:
Relacja jest więc relacją częściowego porządku (słabego) określoną w zbiorze wszystkich podzbiorów danego zbioru, tzw. zbiorze potęgowym[11][12]. Nazywa się ją zawieraniem bądź inkluzją[2][3][4]. Dlatego też dla danych zbiorów pozostających z sobą w relacji mówi się obok „ jest podzbiorem ”, że zawiera się bądź jest zawarty w Analogiczne wyrażenie obok „ jest nadzbiorem ” czyta się zawiera
Relacja ma analogiczne własności (ma element największy zamiast najmniejszego, jest nim również zbiór pusty), a sama nie doczekała się własnej nazwy i również nosi nieściśle nazwę inkluzji bądź zawierania[uwaga 2]. Sposób czytania tych relacji również jest wymienny i zależy od czytelnika, choć zwykle stosuje się wyżej opisany.
Podobnie rzecz ma się z relacjami oraz które niekiedy czyta się „zawiera się całkowicie (w całości) w” i „jest zawarty całkowicie w”. Relacje te są również relacjami częściowego porządku, lecz ostrymi, mają więc nieco inne własności[uwaga 3]; dla dowolnych zbiorów
Z tych dwóch własności wynika też trzecia:
Warto zauważyć, że z własności drugiej i trzeciej wynika pierwsza.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.