Loading AI tools
複数の木板を貼り合わせて作られる板材 ウィキペディアから
英語の「plywood」(プライウッド)の「ply」(プライ)とは、層がいくつも重なった状態、つまり「積層」「多層」のことを指しており、「plywood」で「積層木材」を意味する。
日本では、かつては合板を「ベニヤ板」(ベニヤいた)又は「ベニア板」(ベニアいた)と呼ぶことが多かった。「veneer」(ベニヤ、ベニア)は薄くスライスした単板(突板)のことで、「ベニヤ板」は「ベニヤ」から成る「板」ということになるが、「ベニヤ板」のことを「ベニヤ」を略すこともあり、両者の区別は厳密ではなかった[1]。
合板は、材木を薄くスライスしてできたベニヤ(単板)を1枚ずつ繊維方向に直交させながら接着して積層したものである[2]。一般に、反り(そり)を軽減するためにさまざまな工夫がされている(後述)。近年の合板では、最も一般的には、1~3mm程度のベニヤを多数枚、大抵は奇数枚、繊維方向が90°に、つまり直交するように、互い違いに重ねて接着(より詳細に言うと、大抵は 熱圧接着)されて多層構造になっている。稀に繊維方向が45度ずつ異なる層を重ねたものなどもある。
合板を構成している層の数は、大抵は奇数である。(片面だけ装飾用の薄板や化粧紙など貼ったものは除く)
ひとつの単板を一種の「中心」として想定して、その両となりから、対称的に、繊維の向きを直交させつつ配置してゆく、というのが合板設計における大原則である。対称性を確保することで反り(そり)を軽減したり、寸法安定性を確保する。
では、突板を偶数用いて合板を作りたい場合はどうするかと言うと、たとえばJAS認定を取得している市販の構造用合板の中には、単板の枚数が4枚や6枚など偶数になっているものも一般的に市販されているが、この場合、中心の2枚の単板は、繊維の向きを同じ方向にしてあり、合板の厚み方向から見た繊維の向きの分布は、やはり中心対称である。
同方向に繊維が走っている中心部の単板2枚は、力学的には1層とカウントすべきであるから、このような合板は、単板の枚数は偶数でも、層数に着目するとやはり奇数である。 なお「接着剤の塗布工程での都合を根拠に、単板の枚数を奇数にすれば単板の両面にいっぺんに接着剤を塗布することで生産工程が簡略化できるから、単板の枚数を奇数にしているのだ」といった主旨の説明がなされることもあるが、これは原因と結果を取り違えた不適切な解説であり、正しくない。合板製造工程における接着剤塗布の方法には複数あり、片面に塗布する工程を採用している工場もある。この場合、上記のような合理化は成り立たないし、現実にも、4枚や6枚、8枚など、偶数枚の単板を用いてつくられたJAS認定の構造用合板(中心の2枚は繊維を同じ向きにした)が、市場で普通に販売されている。
なお、繊維の向きを直交だけでなく45度にした層を加えた「斜行型合板」もその性能の高さは古くから研究されており、量産化を目指しつつ試作したものにおいても、従来の合板よりせん断性能に優れた結果が報告されている[3]。異方性のある木材をよりよく使いこなす上で、このような研究は有望な技術をもたらすと期待されているが、斜め向きの単板を安価に量産することにまだ難しい部分があり、さらなる研究が求められている。
合板は数千年前から作られており、紀元前3500年前の古代エジプトに、単板を互い違いに重ね合わせた合板から作られた製品が産出されている。元々は良質な木材の不足のために、合板は作られた。品質の劣る木の表面に、薄くスライスした木材を接着剤で貼り付けた。構造的な利点は偶然のものだった。合板を発明したこの方法は、歴史の中で繰り返された。例えば、アイルランドのシェリダンなどの家具メーカーの多くが合板を使用した。
1797年にはen:Samuel Bentham サミュエル・ベンサム(イギリス海軍の技術者)が、合板製造のための装置についての特許の申請をした。
1837年頃にはサンクトペテルブルクで機械の製造を手がけていた実業家イマニュエル・ノーベル(アルフレッド・ノーベルの父)によって、針葉樹の丸太からロータリーレース(丸太をかつら剥きする機械)によって得られた単板を使った合板の発明がされた[4]。イマニュエルは発明で財を築いたため、アルフレッドに複数の家庭教師をつけ、化学をさらに学ぶためにパリやアメリカへの留学する資金ともなった。
19世紀中盤に最初のロータリーレース機械がアメリカ合衆国に設置されて以降、合板は安価な建築資材として世界中に広まっていった。
日本では、1907年に浅野吉次郎が独自にロータリーレースの機械を開発[5]。拠点であった中京地方を中心として、合板機械の製造や合板の生産が非常に盛んになった。特に、名古屋の堀川沿いには、名古屋港からの木材を加工する大小の合板工場が林立していた。1950年代に尿素系の接着剤が普及するまでは、剥離の発生など粗悪なイメージを払拭することができなかった。
さまざまな分類法がある。材料となった樹木の種類による分類、材料となった単板の仕上がりの状態による分類、強度や剛性による分類、用途による分類、放出されるホルムアルデヒドの量による分類などである。
なお合板は、一般に水にかなり弱いが、船で使用するために特別に耐水性を強めた合板を「Marine Plywood マリン合板」と言う。高価だが船舶の内装のほか、船の種類によっては外装に使われることもある[6]。
米国では、柔らかい木材の合板(≒建築用合板)の単板に着目して、「A」「B」「C」「D]の4つのグレード(等級)に分類されている。(まれに「C-plugged」という5つ目の等級も追加されることがある [7]。またそれらの等級の上に(広く市販されているわけではない、特注品として)「N」という等級も一応ある。
「Classification of Softwood Plywood Rates Species for Strength and Stiffness」と言い、「GROUP 1」から「GROUP 5」までの5つのグループに分類されており、それぞれのグループごとに、含まれる樹木の種類と産地の組み合わせがリスト化されている。
たとえば「GROUP 1」のリストの冒頭は以下のようになっている。
(...) たとえば「GROUP 1」に含まれるのは、ブナではAmerican Beech(アメリカ・ブナ)のみ、カバノキではSweet BirchとYellow Birchのみ、ということになる。
日本農林規格(JAS)では、「ロータリーレース又はスライサーにより切削した単板3枚以上を主としてその繊維方向を互いにほぼ直角にして、接着したもの」を合板としており、建築物の構造用に用いられる構造用合板、コンクリートの型枠に用いられるコンクリート型枠用合板(コンクリートパネル、コンパネ)、特に用途を定めない普通合板、構造用合板の表面等に美観を目的とする単板を貼った化粧ばり構造用合板、普通合板の表面等に美観を目的とする単板を貼った天然木化粧合板、普通合板の表面等にプリント、塗装等の加工をした特殊加工化粧合板の6種類を定めている[8]。かつては普通合板について、「難燃処理」や「防炎処理」が定められていたが、2014年の改正で廃止された[9]。
上述の通り、「コンパネ」はあくまでコンクリート型枠用合板のみのことであり、全ての合板を「コンパネ」と総称するのは間違いである(カテゴリ錯誤)。ホームセンターなどでも売られている「シナ合板(シナベニヤ)」は、天然木化粧合板のうちでも表面にシナノキを用いたものである。
構造用合板には強度等級があり、住宅等の構造上重要な部分には、必要な強度の構造用合板を用いなければならない。日本農林規格では、合板中の接着剤から放出されるホルムアルデヒドの量についての性能区分もあり、合板750cm2から24時間に放散するホルムアルデヒドの量が平均0.3mg/L以下であるF☆☆☆☆から、5.0mg/LのF☆の4段階の区分がある。現在では大半の製品がF☆☆☆☆を取得しているが、製造にホルムアルデヒドを発生する接着剤を使っていないわけではなく、その遊離を抑制するキャッチャー剤を配合しているだけで、依然として多くの合板でホルムアルデヒドを原料とする接着剤が使われている。
国立山林科学院告示第2015-8号「木材製品の規格と品質基準」では普通合板、コンクリート型枠用合板、構造用合板、表面加工合板に分けられる[10]。
日本において、合板の材料となる原木は輸入材が大部分を占めており、大規模な工場生産が始まってからは国産材はほとんど使われていない。熱帯雨林産のラワンやメランチといった広葉樹材がほとんどの時期もあったが、最近では原木の入手難からロシア産カラマツ、ニュージーランド産ラジアータパインといった針葉樹材を原料とするものが増えている。また、2001年までは、国産材の割合は140 - 200千m3、3 - 4%とごくわずかであった[11]が、2008年には2,137千m3、54%と、スギを主体として、合板の主要原料となっている[12]。国産材が使われていなかった理由としては、林業の衰退によって、入荷量を確保することが難しいことや、国産材の多くを占めるスギの性質は合板に向いていないことが挙げられるが、外国産針葉樹原木の先行き不透明感に加え、2002年からの林野庁の新流通システム事業による後押しなどが功を奏し、また、スギ向きの製造装置の導入や、各地での合板向け国産材原木の取りまとめなどにより、これらの課題は克服されつつある。
合板を製造するには、最初にロータリーレースと呼ばれる装置を用いて原木から中間生成物である単板を作る必要がある。この装置は、原木丸太の中心を軸に回転させ、刃を当てるもので、丸太は大根のかつら剥きされて薄板となって出てくる。これを所定の長さでカットし、乾燥させることで単板が作られる。
木目の美しさを重視する家具用の合板の場合、スライサと呼ばれる装置を用いて、平削りによって単板を作ることもある。
次に、単板に接着剤を塗布し、通常は繊維方向を互い違いに重ねて単板の堆積物を作成する。この堆積物にホットプレスと呼ばれる装置を用いて熱と圧力を加えて、接着剤を完全に硬化させることで、合板が製造される。
(単板を繊維方向を同じ向きそろえて接着したものは、LVLと呼ばれる)
この製造工程では、ロータリーレースとホットプレス以外の機械装置は特に必須でないため、今でも発展途上国には、ほとんどの工程を手作業によって合板製造が行われているところがある。一方、先進国では機械化が発達し、例えばロータリーレースの改良により、これまで合板に不向きだった直径の小さな原木からも合板が製造できるようになってきている。
石油化学が発達する以前は、にかわなどの天然物質が使われており、製造工程の精度の悪さとも相まって、合板には「剥がれやすいベニヤ板」という粗悪なイメージがあった。石油化学が発達してからは、透明で安価な尿素樹脂、あるいは耐水性を改善したユリア・メラミン樹脂接着剤が使われてきたが、これらは経年劣化により、徐々に分解してホルムアルデヒドを発散することが問題となっている。現在は製造時に加えるホルムアルデヒドを必要十分な量に抑えること、そして分解で生じたしたホルムアルデヒドを吸収・分解するキャッチャー剤を配合することで対策されているが、それでも過敏な小児においてシックハウス症候群やアトピー性皮膚炎などの原因になることが報告されている。
構造用の針葉樹合板では、フェノール-ホルムアルデヒド樹脂系接着剤が多く使われている。これは耐久性に優れており、化学的に安定であるためホルムアルデヒドの放出も少ないが、透明ではなく濃い褐色をしているため家具や木工用製品としては好まれない。近年は、成分に全くホルムアルデヒドを含まず、色の薄いイソシアネート樹脂系接着剤も使われるようになっている。これは、フェノール系よりやや高価であるが、特定の重合促進剤を添加すれば、硬化に必ずしも高温を必要とせず40℃程度でも30分で硬化するので、他の熱硬化型接着剤で問題となるパンク(ベニアに含まれている水分が、100℃以上に加熱されることによって高圧の水蒸気となり、製造工程の途中で合板が損傷する現象)が生じにくいという利点もある。製造条件が比較的容易になるので、材料のコストが上がっても生産性向上による製造コストの低減により、最終製品のコストはむしろ下がる場合もある。なお、イソシアネート系接着剤は、セルロースやリグニンの水酸基と反応して分子レベルで木材繊維と接着するため、フェノール系よりも硬化後直後の性能は良いが、経年劣化の度合いはやや大きい事がわかっており、比較的新しい材料であり使用実績の年数も短いため、信頼性を特に必要とする分野にはまだ採用されていない。
木材は透湿性がある(透湿抵抗が低い)素材であるが、合板においては多数の接着層が存在するために、極めて透湿抵抗が高い素材となっている。その為、住宅用建材としては壁内結露の問題を回避するために、あえて安価な合板を使用せず、透湿性のある火山性ガラス質複層板(ダイライトやモイスなど)を選択することがある。
耐久性は、しばしば無垢材と比較検討される。各種協会の自主検査などによって、接着剤の種類にも寄るが20年程度は規格内の強度が保たれる事例が多いとされている[13]が、20年以降の耐久性を証明する報告はなく、概ね20-30年前後が寿命と考えられている。合板の劣化には水分が大きく関与しており[14]、近年では耐久性を高めるために、接着剤を浸透させた木材を使用した商品なども開発[15]されている。
様々な用途にもちいられている。主な用途だけでも、下記のような事例を挙げることができる。
また住宅まわりでは、積雪地域では使われなくなった建物の窓が冬季に雪の圧力で割れるのを防ぐ、台風が多い地域では飛来物から窓を護る、など
公共の建物では体育館やコンサートホールなどの建築材料として多用されている。
楽器・音楽関連では下記のものなど(合板の技術は無垢材や集成材を使うより低コストとされているが、必ずしもそうではない場合がある。)。
スポーツ関連の中では下記が衆目を集めやすい。
軍事用途では、
等々、特殊な用途や少量使われる用途などまで挙げてゆくと、合板の用途には際限が無い。
2006年に世界各国で生産された合板は、7,430万m3。国別では、生産量は、多い順に中華人民共和国、アメリカ合衆国、マレーシア、インドネシア、ブラジル、日本。消費量の多い順は中華人民共和国、アメリカ合衆国、日本である。
国内の旺盛な需要に応えるため、19世紀から大規模な工業的生産体制が整えられてきたこと、ロッキー山脈を代表する森林地帯を抱えることから、合板の一大生産・消費地の座を占めてきた。原材料となる針葉樹の資源が減少傾向にあることや、安価な輸入合板に押され、生産量は年々漸減傾向にあるが、2005年時点の国内生産量は1,365万m3を誇り、世界第2位の座を確保している。
旺盛な建設需要に対応するため、合板の製造量は年々拡大し続けている。原材料は、ロシアからの北洋材が中心ではあるが、東南アジアからの南洋材も用いられている。国内産のポプラなどは、若干併用される程度。2006年の国内生産量は2,500万m3であり、国内需要を満たすばかりではなく、アメリカ合衆国や日本などへ向けて、830万m3が輸出されている。
シベリアの森林資源を有するロシアでは、古くから木材産業が主力産業の一つとされていた。しかし、多くは丸太などの素材生産であり、合板などの付加価値を付けた生産品は、2000年代以降に活発になった。2008年の国内生産量は260万m3と、中国などと比べて桁が1つ低いが、北洋材に高い関税を掛ける(2009年以降は80%)など、原料段階で合板の価格形成や生産量の面で主導権を握ろうとしていることが特徴。今後は生産量が高まるものとみられている。
第二次世界大戦中には航空機に使用する高品質な金属を節約するため、デルタ合板が開発された。
国土の多くが熱帯雨林で占められているため、古くから木材生産が活発に行われてきたが、1985年に自国の資源保護と産業育成のため、丸太の輸出を禁止。以後、合板など付加価値を付けた製品の製造輸出に注力してきた。現在、生産量で世界第4位の座を占めている。 日本向けの輸出も多い。
日本では、合板の利用法としては、家具や造作材、コンクリートの型枠としての利用が主であったが、構造用合板として住宅の壁や床に利用されるようになってから、需要が拡大した。最近では12mm以上の厚物合板が床に利用される例が増えてきている。
2004年時点の国内生産量、輸入量、および広葉樹・針葉樹合板のシェアを示す(単位:1000m3)。
広葉樹合板 | 針葉樹合板 | 合計 | |
---|---|---|---|
国内生産量 | 999 | 2,150 | 3,149 |
輸入量 | 4,350 | 130 | 4,480 |
合計 | 5,349 | 2,280 | 7,629 |
以上のように、合板生産は日本国外への移転が進んでいるが、国内生産においては針葉樹合板の生産が非常に多くなっており、インドネシアやマレーシアなどからの輸入合板については広葉樹合板の輸入がほとんどを占めている。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.