kémiai vegyület From Wikipedia, the free encyclopedia
A ferrocén egy fémorganikus vegyület, képlete Fe(C5H5)2. A metallocének prototípusa, azaz az elsőként előállított olyan vegyület, melyben két ciklopentadienilcsoport kötődik egy központi fém ellentétes oldalaihoz. Alakjukból adódóan szendvicsvegyületeknek is hívják őket.[4][5] A fémorganikus kémia gyors fejlődése a ferrocén, titanocén, rodocén, illetve ezek analógjainak felfedezéséből eredő izgatottságnak tulajdonítható.
Ferrocén | |||
IUPAC-név | ferrocén, bisz(η5-ciklopentadienil)vas | ||
Más nevek | diciklopentadienil-vas | ||
Kémiai azonosítók | |||
---|---|---|---|
CAS-szám | 102-54-5 | ||
PubChem | 11985121 | ||
ChemSpider | 7329 | ||
ChEBI | 30672 | ||
| |||
| |||
InChIKey | KTWOOEGAPBSYNW-UHFFFAOYSA-N | ||
UNII | U96PKG90JQ | ||
Kémiai és fizikai tulajdonságok | |||
Kémiai képlet | (C5H5)2Fe | ||
Moláris tömeg | 186,04 g/mol | ||
Megjelenés | Narancssárga por | ||
Szag | kámforszerű | ||
Sűrűség | 1,107 g/cm³ (0 °C), 1,490 g/cm³ (20 °C)[1] | ||
Olvadáspont | 172,5 °C | ||
Forráspont | 249 °C | ||
Oldhatóság (vízben) | Vízben oldhatatlan, de a legtöbb szerves oldószerben oldódik. | ||
Veszélyek | |||
EU osztályozás | [2] | ||
Főbb veszélyek | Lenyelés vagy belégzés esetén rendkívül káros, irritálja a bőrt[3] | ||
Ha másként nem jelöljük, az adatok az anyag standardállapotára (100 kPa) és 25 °C-os hőmérsékletre vonatkoznak. |
Eleinte akaratlanul állították elő a ferrocént. Először Pauson és Kealy a Duquesne Egyetemen számolt be a ciklopentadienil-magnézium-bromid és a vas(III)-klorid közötti reakcióról. Céljuk fulvalén előállítása volt oxidatív diénkapcsolási reakcióval, ehelyett egy meglepően stabil, halvány narancssárga por keletkezett.[6] Egy másik csoport a British Oxygen cégnél szintén előállított ferrocént, bár ezt ők sem tudták. Miller, Tebboth és Tremaine szénhidrogénekből, például ciklopentadiénből próbáltak ammónia segítségével aminokat előállítani a Haber-folyamat átalakításával. Eredményüket 1952-ben publikálták, bár a tényleges munkát 3 évvel korábban végezték.[7][8][9] Az új vasorganikus vegyület stabilitása a negatív töltésű ciklopentadienilek aromás voltával volt összefüggésben, de a η5(pentahapto) szendvicsszerkezetet nem ők ismerték fel.
Robert Burns Woodward és Geoffrey Wilkinson a reaktivitást vizsgálva következtetett a szerkezetre.[10] Tőlük függetlenül Ernst Otto Fischer is szendvicsformára gyanakodott, és további metallocének, például nikkelocén és kobaltocén szintézisébe kezdett.[11]
A ferrocén szerkezetét NMR-spektroszkópiával és röntgen-krisztallográfiával igazolták.[8][12][13][14] A jellegzetes „szendvics”-alak megállapításával hirtelen megnőtt az érdeklődés a d-mező elemeinek és szénhidrogéneknek a reakciójából származó vegyületek kutatásában, ezzel felvirágoztatva a fémorganikus kémia ágát. 1973-ban Fischer és Wilkinson, a Müncheni Műszaki Egyetem, illetve a londoni Imperial College kutatója megosztott Nobel-díjat kaptak a fémorganikus kémiában nyújtott munkásságukért és a metallocénekkel végzett kutatásaikért.[15]
Az öt szénatomos gyűrűkben a C–C kötéshossz 1,40 Å, a vas- és szénatomok közti távolság 2,04 Å. Röntgen-krisztallográfiás[16] mérés szerint (monoklin tércsoportban) a ciklopentadienilek (Cp) nyitott konformációban vannak, de gázfázisú elektrondiffrakcióval és elméleti számításokkal igazolták,[17] hogy gázfázisban a Cp-gyűrűk fedő állásúak. Úgy gondolják, hogy kondenzált fázisban a nyitott konformáció a legstabilabb a kristályok elrendeződése miatt. A nyitott konformáció pontcsoportja D5d, a fedő állásúé pedig D5h.
Szubsztituált származékokon végzett 1H és 13C NMR-spektroszkópiás mérésekkel megfigyelték, hogy a Cp gyűrűk kis energiagáttal képesek elfordulni a Cp–Fe–Cp tengely körül. A metilferrocénben (C5H5–Fe–C5H4–CH3) például a C5H5 gyűrű szingulett jelet mutat.[18]
Kötések szempontjából a ferrocénben a központi vasatom oxidációs számát +2-nek veszik, ami összhangban van a Mössbauer-spektroszkópiás mérésekkel. A két ciklopentadienil-csoportra így egyszeres negatív töltés adódik, és minden gyűrűben hat π-elektron foglal helyet, ez teszi a vegyületet aromássá. Ez a tizenkét delokalizált elektron (gyűrűnként 6 db) létesít közös kötő elektronpárt (kovalens kötést) a fématommal. Ha ezekhez hozzáadjuk a Fe2+ d-alhéjon lévő 6 elektronját, a 18 elektronos szabály szerint egy stabil komplex képződik.
A ferrocén elsőként leírt szintézise[19] ciklopentadienil-magnézium-bromid Grignard-reagensből indult ki, amely ciklopentadién, magnézium és brómetán reakciójából nyerhető vízmentes benzolban. Ezután vas(III)-kloridot kevernek el vízmentes dietil-éterrel, majd hozzáadják a Grignard-reagenshez. A szintézis idealizált reakcióegyenlete a következő:
Azóta számos más előállítási utat is leírtak, az egyik ilyen a gázfázisú ciklopentadién és elemi vas reakciója 350 °C-on.[20] A folyamat vas-pentakarbonillal is lejátszódik.[21]
Ennél azonban vannak eredményesebb transzmetallációs folyamatok is. Ha például nátrium-ciklopentadienidet[22] vagy frissen krakkolt, kálium-hidroxiddal deprotonált ciklopentadiént vízmentes vas(II)-kloriddal reagáltatnak, jobb kitermeléssel nyerhető ferrocén. Ezt a folyamatot általában valamilyen éteres oldószerben végzik.[23]
A deprotonációra egyes bázikus aminok is alkalmasak, ám így a reakció jóval lassabban megy végbe, mint az erősebb lúgok esetén.[22]
Más metallocénekből, például manganocénből közvetlen transzmetallációval is előállítható.[24]
Ahogy a szimmetrikus, töltéssel nem rendelkező részecskék, a ferrocén is oldható a mindennapokban használt szerves oldószerek többségében, például benzolban, vízben azonban oldhatatlan. A ferrocén levegőn stabilis vegyület, amelyre jellemző, hogy vákuumban hevítve szublimál. 400 °C-ig stabil,[25] efelett bomlik. A következő táblázat a ferrocén különböző hőmérsékleteken mérhető gőznyomását mutatja:[26]
Nyomás (Pa) | 1 | 10 | 100 |
---|---|---|---|
Hőmérséklet (K) | 298 | 323 | 353 |
Sok aromás vegyületekre jellemző reakcióban részt vesz, így vannak szubsztituált származékai. Egyik alapvető kísérlet a Friedel-Crafts-reakció, amelyben ecetsav-anhidriddel (vagy acetil-kloriddal) reagáltatják, katalizátorként foszforsavat használva.
A ferrocénnek sok foszfinszármazéka ismert, és ezek egy részét ipari eljárásokban is használják.[27] Legegyszerűbb, és talán legjobban ismert az 1,1′-bisz(difenilfoszfino)ferrocén (dppf), amelyet dilítioferrocénből nyernek. Me2NPCl2 és ferrocén alumínium-klorid jelenlétében reagálva ferrocenil-diklórfoszfinná alakul. Hasonló körülmények között fenildiklórfoszfinnal[28] P,P-diferrocenil-P-fenilfoszfin állítható elő.[29] Az anizolhoz hasonlóan ferrocén és P4S10 reakciójakor diferrocenil-ditiadifoszfetán-diszulfid keletkezik.[30]
A ferrocén könnyen reakcióba vihető butil-lítiummal, ekkor 1,1′-dilítioferrocén keletkezik, ami pedig erősen nukleofil. Terc-butil-lítiummal csak egy Li-atom épül be, monolítioferrocén jön létre.[31] S8, klórfoszfinok vagy klórszilánok használatakor végbemenő reakciók különösen hasznosak a funkciós csoportok kimutatására. A keletkező termékek gyűrűnyitásos polimerizációra hajlamosak.[32]
A szerves vegyületek többségével ellentétben a ferrocén alacsony potenciálon (telített kalomel elektródhoz mérve kb. 0,5 V-on) 1-elektronos oxidációt szenved. Ezt a reverzibilis oxidációt az elektrokémiában mint standardot használják Fc+/Fc = 0,64 V standardpotenciállal. Néhány elektronban gazdag szerves vegyület (pl. anilin) szintén alacsony potenciállal oxidálódik, de a reakció egyirányú. A ferrocén 1 elektron leadásával kék színű [Fe(C5H5)2]+ kationná, eredetileg ferricíniumnak, elterjedtebb nevén ferrocéniumnak nevezett ionná alakul (a két név ugyanazt az anyagot jelöli, szemben a ferri- és a ferro- előtagok közti különbséggel, amelyek a vasatom különböző oxidációs állapotú ionjaira utalnak). FeCl3 jelenlétében az oxidáció könnyen végbemegy, a kationt leggyakrabban PF–6 só formájában nyerik ki. Másik lehetőség, ha az oxidációt ezüst-nitráttal végzik.
A ferrocénium sóit oxidálószernek használják, részben azért, mert a termékként keletkező ferrocén meglehetősen közömbös, és más ionos anyagoktól is könnyen elválasztható.[33] A ciklopentadienil ligandumokra kerülő szubsztituensek a várható irányba változtatják a redoxipotenciált: az elektronszívó funkciós csoportok (pl. karboxilcsoport a potenciált az anód felé mozdítják (azaz pozitívabbá teszik), míg az elektronküldő csoportok (pl. metilcsoport) a katód irányába tolják azt (tehát negatívabb lesz a potenciál). Emiatt a dekametilferrocén a ferrocénnél sokkal könnyebben oxidálódik. Ferrocént gyakran használnak belső standardként a nem-vizes oldatokban lejátszódó elektrokémiai reakcióknál a redoxipotenciál beállítására.
Az általános szubsztitúciós reakciók a ferrocénnel is végbemennek az egyik vagy mindkét gyűrűn. A leggyakoribb származékok 1-szubsztituáltak (egy szubsztituens az egyik gyűrűn) vagy 1,1′-diszubsztituáltak (mindkét gyűrűn egy-egy szubsztituens). A gyűrűk általában szabadon fordulnak el, ez egyszerűsíti az izomériaviszonyokat. A diszubsztituált ferrocénnek 1,2-; 1,3- vagy 1,1′- izomerei létezhetnek, ezek nem alakulnak át egymásba. Az egyazon gyűrűn aszimmetrikusan diszubsztituált ferrocénszármazékok királisak - például a [CpFe(EtC5H3Me)] királis, a [CpFe(C5H3Me2)] viszont akirális. A planáris kiralitás annak ellenére jön létre, hogy a molekula egyetlen sztereogén központot sem tartalmaz. A jobb oldali képen látható szubsztituált ferrocén (4-(dimetilamino)piridin származék) a racém másodrendű alkoholok kinetikus rezolválásában hasznos.[34]
A ferrocént, illetve származékait nem használják nagy mennyiségben, de számos speciális alkalmazásuk van, melyekben kihasználják ezen molekulák szokatlan szerkezetét (gyógyászatban), stabilitását (kopogásgátló készítményekben vagy más anyagok prekurzoraként) és redoxi-sajátságait (reagensként vagy redoxi standardként).
A benzinüzemű gépjárművekben kopogásgátló szerként van jelen, amely a korábban használt tetraetil-ólomnál sokkal biztonságosabb, mivel nem károsítja a környezetet.[35] Az ólommentes benzinek megfelelő oktánszámának beállításához elsősorban ferrocént használnak, mivel relatíve ez a legolcsóbb adalékanyag. A 102 RON oktánszámú versenyautókban használt benzin ferrocéntartalma 120–150 mg/liter. Több tabletta formájú, vagy folyékony benzinadalék egyik fő összetevője a ferrocén, melynek elsődleges célja a benzin oktánszámának emelése.
Néhány ferrocéniumsónak rák- és maláriaellenes hatása van,[36] egy erre a célra kifejlesztett kísérleti gyógyszer hatóanyaga a tamoxifen ferrocenilszármazéka.[37] Elméletileg a tamoxifen kötődni fog az ösztrogén-megkötő sejtekhez, így citotoxikus hatást fejt ki.[37][38][39]
Elemi vasra történő lebomlását szén nanocsövek gyártásakor használják ki.[40] Ferrocénből vinil-ferrocén keletkezik aldehidek, foszfóniumsók és nátrium-hidroxid Wittig-reakciójában. A vinil-ferrocén polimerizálható, a polimer a polisztirol ferrocenilszármazékának tekinthető (a fenilcsoportot ferrocenilcsoport helyettesíti).[41]
Ez a szakasz nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szakaszban szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. |
Mivel elterjedt az a szokás, hogy az olcsó tüzelőolajjal működtették az autókat, 1990-ben született egy törvény, mely szerint a fűtőolajat színezni kell: erre a célra ferrocént használtak, amely feloldódva vörös színt adott az olajnak. Egyes nem hivatalos források azt terjesztették hogy a színezőanyag a motort károsítja, így próbálták elérni hogy mindenki rendeltetésszerűen használja az olajat. A ferrocénnek nincs ismert káros hatása a motorra. A színezés vámkezeléskor történt, ha a vámost sikerült megvesztegetniük, ezt színezetlenül gázolajként vehették át az emberek. Egyesek kénsavat adtak a piros olajhoz, annak hatására visszanyerte eredeti színét - ezt hívták olajszőkítésnek. A szőkítők ezt olcsón el tudták végezni, és egyesek rengeteget tudtak ilyen módon spórolni.
A ferrocén analógjai a ciklopentadienilcsoport változtatásával jöhetnek létre, például bisz-indenil-vas és bisz-fluorenil-vas.[27]
A szénatomok heteroatomokkal helyettesíthetők, ahogy a Fe(η5-C5Me5)(η5-P5) és a Fe(η5-C5H5)(η5-C4H4N) („azaferrocén”) esetén látható. Az azaferrocén a Fe(η5-C5H5)(CO)2(η1-pirrol) ciklohexánban történő dekarbonilezésének végterméke.[42] A vegyület benzolban való refluxoltatása ferrocént eredményez.[43]
A szubsztitúció könnyen elvégezhető voltának köszönhetően számos, szerkezetileg szokatlan ferrocénszármazékot állítottak már elő.[44] A penta(ferrocenil)ciklopentadienil ligandumban például egy ciklopentadienil-csoporthoz öt ferrocén kapcsolódik, mint szubsztituens.
A hexaferrocenil-benzol esetén a benzol mind a hat szénatomjához kapcsolódik egy ferrocenil-csoport (R).[45] A vegyület röntgen-krisztallográfiás analízise azt bizonyította, hogy a ferrocének nincsenek egy síkban a benzollal, a diéderes szögek váltakozva +30° és −80°-osak. Térbeli zsúfoltságuk miatt a ferrocenilek kis mértékben, 177°-ban meghajolnak, a C–Fe kötések pedig némileg megnyúlnak. A kvaterner (negyedrendű) szénatomok alakja a ciklopentadienil-gyűrűkön síkháromszög.[46]
A hexaferrocenil-benzol előállításához hexajódbenzol és diferrocenil-cink Negishi-kapcsolását hajtották végre tetrahidrofuránban, trisz(dibenzilidénaceton)dipalládium(0) katalizátor mellett.[45]
A kitermelés csupán 4%-os, valószínűleg az arénközpont körüli zsúfoltság miatt ilyen kevés.
Ez a szócikk részben vagy egészben a Ferrocene című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.