Remove ads
מוויקיפדיה, האנציקלופדיה החופשית
באלגברה מופשטת, חוג נתרי הוא חוג עם יחידה המקיים את תנאי השרשרת העולה על האידיאלים השמאליים שלו, כלומר כל סדרה עולה ממש של אידיאלים שמאליים בחוג כזה מוכרחה להסתיים. חוגים אלו קרויים על שמה של אמי נתר אשר חקרה חוגים אלה, בעקבות מורה דויד הילברט. מתנאי השרשרת נובע שכל אידיאל שמאלי של החוג הוא בעל מספר יוצרים סופי, ועובדה זו מגבילה את הגודל והמורכבות של חוגים נתריים. בתורת החוגים נודעת חשיבות מיוחדת לחוגים נתריים, בשל הקשר שלהם לאובייקטים גאומטריים ותורת המבנה שניתן לבסס עבורם; חוגים שאינם נתריים עשויים להיות מורכבים וסבוכים בהרבה.
אחת התכונות החשובות של חוגים אלה היא שלאידיאלים הראשוניים יש גובה סופי - ולכן אפשר ללמוד את הספקטרום באינדוקציה על הממד, דרך שרשראות של אידיאלים ראשוניים. גובהם של האידיאלים הראשוניים סופי, אבל אינו בהכרח חסום, ולכן ישנם חוגים נתריים שממד קרול שלהם אינסופי. עם זאת, לאלגברות אפיניות (קומוטטיביות), שהן אחד המקורות העיקריים לדוגמאות של חוגים נתריים, יש ממד קרול סופי.
תנאי השרשרת היורדת, שהוא דואלי לתנאי השרשרת העולה, מגדיר חוגים הנקראים ארטיניים. הסימטריה מדומה בלבד: כל חוג ארטיני הוא נתרי (משפט הופקינס-לויצקי). חוגים נתריים מקיימים את תנאי משפט גולדי, על שיכון חוגים ראשוניים (למחצה) בחוגים ארטיניים פשוטים (למחצה).
אוסף החוגים הנתריים סגור ביחס לפעולות אלגבריות מסוימות: חוג מנה של חוג נתרי הוא נתרי, וגם מכפלה ישרה של שני חוגים נתריים היא נתרית. לעומת זאת, (ובניגוד למצב עבור מודולים נתריים), תת-חוג של חוג נתרי אינו בהכרח נתרי. חוג הוא נתרי אם ורק אם כל המודולים הנוצרים סופית מעליו הם נתריים. חוג פולינומים מעל חוג נתרי הוא נתרי, וחוג המטריצות מעל חוג נתרי הוא נתרי.
הנתריות מוגדרת (ברוב הספרים) במונחי האידיאלים השמאליים. באופן דומה אפשר להגדיר גם:
ישנם חוגים נתריים שאינם נתריים ימניים (ולהפך), אבל בחוגים קומוטטיביים מתלכדות כל התכונות.
חוג הוא נתרי אם ורק אם הוא נתרי כמודול מעל עצמו (משום שהאידיאלים השמאליים של החוג הם תת-המודולים שלו).
מתנאי המקסימום אפשר להסיק שכל אידיאל שמאלי בחוג מוכל באידיאל שמאלי מקסימלי; תכונה זו נכונה בכל חוג, על-פי הלמה של צורן.
משפט. חוג קומוטטיבי הוא נתרי אם ורק אם כל אידיאל ראשוני נוצר סופית.
משלוש התכונות האחרונות נובע שכל אלגברה קומוטטיבית נוצרת סופית היא נתרית.
הוכחה: נשתמש כאן פעמיים בתנאי ה-ACC של חוג נתרי. נניח ש- הוא איבר לא הפיך ב-, ונגדיר את הסדרה על ידי הכללים: ; הוא מחלק אמיתי של (מחלק אמיתי - אינו הפיך, וגם המנה ביחס אליו אינה הפיכה). האידיאלים מהצורה יוצרים שרשרת עולה ממש, ולכן, על פי תנאי ה-ACC, זו שרשרת סופית, והאיבר האחרון בה הוא אי-פריק. הוכחנו כי לכל איבר לא הפיך יש מחלק אי-פריק. נשתמש בעובדה זו על מנת ליצור סדרה חדשה המוגדרת על ידי: ; , כאשר אי-פריק. קיבלנו ש- הוא מכפלה של איברים אי-פריקים.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.