Loading AI tools
bactérie De Wikipédia, l'encyclopédie libre
Bacillus thuringiensis[2] (souvent abrégé en Bt) est une espèce de bactérie utilisée pour ses propriétés insecticides. C'est un bacille Gram positif, aérobie facultatif, ubiquiste et sporulé. On le retrouve en faible quantité dans pratiquement tous les sols, l'eau, l'air et le feuillage des végétaux. Il fait partie d'un ensemble de six bacilles dénommé « groupe Bacillus cereus » : B. anthracis (responsable de la maladie du charbon), B. cereus, B. mycoides, B. pseudomycoides, B. weihenstephanensis et B. thuringiensis.
Domaine | Bacteria |
---|---|
Phylum | Bacillota |
Classe | Bacilli |
Ordre | Caryophanales |
Famille | Bacillaceae |
Genre | Bacillus |
Bacillus thuringiensis a été isolé en 1901 par le bactériologiste japonais S. Ishiwata à partir de vers à soie qu'il peut infecter et tuer mais sa première description scientifique est due à l'allemand Ernst Berliner (de) en 1911.
L'acronyme Bt désigne aussi fréquemment la molécule pesticide (insecticide, acaricide...), parfois dénommée thuringiensine, obtenue à partir de cette bactérie (ou des bactéries proches telles que Bacillus sphaericus), ou encore produite par génie génétique par des plantes (OGM) dans lesquelles on a introduit certains fragments du génome de cette bactérie.
En 2006, le Bt était le biopesticide le plus utilisé (comme bio-insecticide) avec plus de 90 % du marché des bioinsecticides, mais seulement 2 % à peine du marché global des insecticides (Fargues et Bourguet 2005). Il est aussi produit par les plantes transgéniques, sans effet sur certaines espèces d’insectes qui y sont devenues résistantes ou plus ou moins bien dans certains cas.
À l'état végétatif, le bacille Bacillus thuringiensis a la forme d'un bâtonnet de 5 µm de long sur 1 µm de large, pourvu de flagelles.
Il se distingue des autres bacilles du groupe cereus par sa capacité à synthétiser et excréter des δ
-endotoxines qui sont des cristaux (Cri) mortellement toxiques pour certains insectes et certains invertébrés. Ces cristaux ne sont pas minéraux, mais protéiques (formés de l'association de plusieurs protéines qui, ensemble, ont une propriété insecticide sur les larves de lépidoptères, les coléoptères et/ou les diptères). Elles agissent en détruisant les cellules de l'intestin moyen de la larve d'insecte atteint par ces toxines, ce qui aboutit à la mort de l'insecte, qui peut alors être consommé par le bacille.
On connaît actuellement plus de 14 gènes codant ces protéines dénommées "Cri" (pour protéine cristal) par les biochimistes.
La bactérie synthétise des δ-endotoxines au moment de sa sporulation.
Ce sont des inclusions de cristaux qui peuvent alors composer 20 à 30 % du poids sec des cellules sporulées[3],[4]. Elles sont essentiellement composées de :
Les vertus entomotoxiques de Bacillus thuringiensis ont suscité un intérêt agricole, sylvicole et commercial dès les années 1920 (avec des essais de lutte biologique conduits en Hongrie) et dans les années 1930 (en Yougoslavie) afin de contrôler des insectes (Lépidoptères notamment)[8]. Cet intérêt s'est renouvelé — de manière bien plus marquée — à la fin du XXe siècle avec le développement du génie génétique et de l'agriculture biologique.
Les premières applications de Bacillus thuringiensis dans l'environnement dateraient de 1930. Elle a ensuite été utilisée dès les années 1950 dans les forêts, les champs et les vignobles.
Jusqu'au milieu des années 1970, sa principale application était la lutte contre les lépidoptères défoliateurs dans les forêts et certains papillons parasites des grandes cultures, du maïs notamment.
En 1976, la découverte de deux sérotypes dits israelensis (« Bti ») et tenebrionis (Btt) a permis l'ouverture de nouveaux marchés, grâce à une action larvicide sur les moustiques, les simulies et les coléoptères.
Aujourd'hui la bactérie Bacillus thuringiensis est l'insecticide le plus utilisé au monde en agriculture biologique[10],[11].
Ce produit, lorsqu'il est d'origine naturelle, est autorisé en agriculture bio, sous forme de poudre.
La toxine Bacillus thuringiensis (Bt) est également utilisé dans des OGM (maïs Bt, Coton Bt, etc.) ce qui a permis de remplacer les insecticides chimiques dans une large gamme de cultures[12] bien que des souches de ravageurs des cultures devenues résistantes au Bt commencent à poser des problèmes.
En France, il sert notamment à désinsectiser la Camargue [13] et la Charente-Maritime [14].
La toxicité du Bt pur pour des animaux à sang chaud n'est pas nulle[15].
Ainsi la thuringiensine purifiée inhalée présente une toxicité pulmonaire significative chez le rat de laboratoire (souche Sprague-Dawley, traité via l'instillation intratrachéale) avec 0 ; 0,4; 0,8; 1,6; 3,2 ; 6,4 et 9,6l mg de thuringiensine par kg de poids corporel. La DL50 aiguë pulmonaire est de 4,4 mg/kg. Et le nombre de cellules inflammatoires et la quantité de lactate déshydrogénase (LDH) dans le lavage broncho-alvéolaire (LBA) augmentent de manière « dose-dépendante »[15].
Avec une dose efficace de 1,6 mg/kg retenue pour l'étude de l'évolution temporelle de la toxicité pulmonaire, le poids des poumons a augmenté chez les rats traités, ainsi que le taux d'hydroxyproline pulmonaire et le nombre total de cellules trouvées dans le LBA 2, 4, 7, 14, 28 et 56 jours après le traitement. Par rapport aux témoins, les taux de protéines totales du LBA ont augmenté de 361, 615, 116, 41, 34 et 41 %, après respectivement 2, 4, 7, 14, 28 et 56 jours[15]. L'activité de l'enzyme LDH dans le LBA a montré une augmentation significative après 1, 2, 4, 7, 14, 28 et 56 jours, et le taux de fibronectine s'est élevé de 164, 552, 490, 769, 335, 257 et 61 %, mais ni le facteur de nécrose tumorale, ni l'interleukine-1 ont augmenté[15]. L'histologie des rats traités était anormale (avec une inflammation bronchiolitique et des alvéoles puis nécroses cellulaires dans les bronches aux jours 1 et 2, avec des zones d'épaississement septal, infiltration cellulaire et dépôt de collagène dans les espaces alvéolaires et intestinaux durant les jours 4 à 5 6. La thuringiensine purifiée présente donc une toxicité pulmonaire chez le rat[15] et le stress oxydatif semble en cause[16]. La thuringiensine peut aussi négativement agir sur l'adenylate cyclase dans le cerveau du rat[17].
On a montré à la fin des années 1970 que la thuringiensine (ou toxines dites Bt) est une protéine cristalline très sensible aux rayons ultraviolets solaires qui la dégradent rapidement[18].
Elle est également très instable en phase aqueuse[19] et sa demi-vie diminue quand la température monte[19]. Le Bt utilisé en pulvérisation a donc l'avantage d'être peu rémanent sur les feuilles (un peu plus dans le sol), avec l'inconvénient d'être actif moins longtemps.
Cependant l'industrie des biotechnologies a produit des plantes transgéniques dite "Bt", c'est-à-dire modifiées par ajout d'un ou plusieurs des gènes codant la toxine insecticide (Cry1Ab) de Bacillus thuringiensis.
Ces plantes en produisent dans leurs tissus aériens (feuilles et tige), dans leur pollen, mais également dans les exudats de la sphère racinaire (rhizosphère), d'où le Bt pourrait peut-être s'accumuler plus longtemps dans le sol (une étude de 2002 n'en a pas trouvé dans le sol de cultures de coton transgénique[20] mais la molécule peut être fortement adsorbée sur l'argile.
Selon N Helassa (2008) l'adsorption de la toxine sur les argiles du sol est une interaction de faible affinité, fortement dépendante du pH mais difficilement réversible (d'après des tests faits sur de la montmorillonite)[21]. Dans un sol argileux, la mobilité de la protéine dépendra alors de l'érosion, de transports de colloïdes et du degré de bioturbation du sol concerné. Par ailleurs, des travaux ayant porté sur la persistance de la toxine Bt dans le sol ont conclu que (dans les conditions de cette étude) plus de 50 % de l’immuno-réactivité de la toxine était perdue en moins de 7 jours[21] ; la dégradation semble ne pas être due à des microbes : « la toxine ne soit pas dégradée mais plutôt inactivée par des changements de conformations à la suite de son interaction avec les composants du sol »[21]. Des études (au champ et en laboratoire) visent à améliorer la compréhension des phénomènes d’adsorption/désorption de la protéine Bt dans le sol[21].
Le niveau de risque est discuté et il n'existe pas encore de consensus scientifique à ce propos.
Des cas de résistance (voire de forte résistance[38]) sont déjà documentés[39], dont chez les moustiques piqueurs et des insectes posant des problèmes pour les cultures[40],[41],[42],[43],[44],[45],[46],[47],[48],[49],[50],[51], [52],[53].
L'étymologie de cette espèce B. thuringiensis est la suivante : thu.rin.gi.en’sis. L. masc./fem. adj. thuringiensis, appartenant à la Thuringe[54]. Le nouveau nom a été validé également en 1980 par l'ICSP[55].
Selon la LPSN, il existe 23 sous-espèces de Bacillus thuringiensis mais aucune dont le nom a été publié de manière valide[54].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.