Loading AI tools
moteur à courant alternatif De Wikipédia, l'encyclopédie libre
La machine asynchrone, connue également sous le terme anglo-saxon de machine à induction, est une machine électrique à courant alternatif sans connexion entre le stator et le rotor. Comme les autres machines électriques (machine à courant continu, machine synchrone), la machine asynchrone est un convertisseur électromécanique basé sur l'électromagnétisme permettant la conversion bidirectionnelle d'énergie entre une installation électrique parcourue par un courant électrique (ici alternatif) et un dispositif mécanique.
Cette machine est réversible et susceptible de se comporter, selon la source d'énergie, soit en « moteur » soit en « générateur », dans les quatre quadrants du plan couple-vitesse[1],[2],[3] :
Comme ce fonctionnement est sans discontinuité et ne dépend pas de la machine elle-même mais de l'ensemble source d'alimentation/machine/charge, la distinction moteur/générateur est « communément » faite par rapport à la finalité d'usage de la machine. C'est ainsi que dans le langage commun l'utilisation de « moteur asynchrone » pour désigner cette machine est fréquent.
Les machines possédant un rotor « en cage d'écureuil » sont aussi connues sous le nom de machines à cage ou machines à cage d'écureuil. Le terme asynchrone provient du fait que la vitesse de rotation du rotor de ces machines n'est pas exactement déterminée par la fréquence des courants qui traversent leur stator (voir : « Principes généraux – Glissement d'une machine asynchrone »).
La machine asynchrone a longtemps été fortement concurrencée par la machine synchrone dans les domaines de forte puissance, jusqu'à l'avènement de l'électronique de puissance. Elle est utilisée dans de nombreuses applications, notamment dans le transport (métro, trains, propulsion des navires, remontées mécaniques, automobiles électriques), dans l'industrie (machines-outils), dans l'électroménager. Elle était à l'origine uniquement utilisée en « moteur » mais, toujours grâce à l'électronique de puissance, elle est de plus en plus souvent utilisée en « génératrice »[6],[7], par exemple dans les éoliennes[8].
Pour fonctionner en courant monophasé, les machines asynchrones nécessitent un système de démarrage. Pour les applications de puissance, au-delà de quelques kilowatts, les machines asynchrones sont uniquement alimentées par des systèmes de courants triphasés.
La paternité de la machine asynchrone est controversée. Elle pourrait être attribuée à trois inventeurs :
Du fait de sa simplicité de construction, d'utilisation et d'entretien, de sa robustesse et son faible prix de revient, la machine asynchrone est aujourd'hui très couramment utilisée comme moteur dans une gamme de puissance allant de quelques centaines de watts à plusieurs milliers de kilowatts.
Quand la machine asynchrone est alimentée par un réseau à fréquence fixe, il est difficile de faire varier sa vitesse. En outre, au démarrage, le couple est faible et le courant appelé est très élevé. Deux solutions historiques ont résolu ce dernier problème : le rotor à encoches profondes et le rotor à double cage mis au point en 1912 par Paul Boucherot.
Grâce aux progrès de l'électronique de puissance, l'alimentation par un onduleur à fréquence variable permet maintenant de faire démarrer la machine convenablement et de la faire fonctionner avec une vitesse réglable dans une large plage. C'est pourquoi il est utilisé pour la motorisation des TGV Dasye ainsi que des rames du métro comme le MP 89[13],[14], ou comme les trains de types TER ou RER, comme les AGC et les Z 50000.
La machine se compose de deux pièces principales :
Cette machine peut, selon sa construction, être alimentée par un réseau monophasé ou polyphasé (généralement triphasé car c'est celui de la distribution).
La machine asynchrone est la machine électrique la plus utilisée dans le domaine des puissances supérieures à quelques kilowatts car elle offre alors le meilleur rapport qualité prix, surtout depuis l'apparition dans les années 1970 de variateurs permettant de faire varier la fréquence de rotation de la machine dans une large gamme[15].
Bien que réversible, la machine asynchrone est principalement (mais pas exclusivement, particulièrement dans le cas des éoliennes) utilisée en moteur.
Les courants statoriques créent un champ magnétique tournant dans le stator. La fréquence de rotation de ce champ est imposée par la fréquence des courants statoriques, c’est-à-dire que sa vitesse de rotation est proportionnelle à la fréquence de l'alimentation électrique. La vitesse de ce champ tournant est appelée vitesse de synchronisme.
L'enroulement au rotor est donc soumis à des variations de flux (du champ magnétique). Une force électromotrice induite apparaît et crée des courants rotoriques. Ces courants sont responsables de l'apparition d'un couple qui tend à mettre le rotor en mouvement afin de s'opposer à la variation de flux : loi de Lenz-Faraday. Le rotor se met donc à tourner pour tenter de suivre le champ statorique.
La machine est dite asynchrone car elle est dans l'impossibilité, sans la présence d'un entraînement extérieur, d'atteindre la même vitesse que le champ statorique. En effet, dans ce cas, vu dans le référentiel du rotor, il n'y aurait pas de variation de champ magnétique ; les courants s'annuleraient, de même que le couple qu'ils produisent, et la machine ne serait plus entraînée. La différence de vitesse entre le rotor et le champ statorique est appelée vitesse de glissement.
Lorsqu'elle est entraînée au-delà de la vitesse de synchronisme — fonctionnement hypersynchrone — la machine fonctionne en générateur alternatif. Mais son stator doit être forcément relié au réseau car lui seul peut créer le champ magnétique nécessaire pour faire apparaître les courants rotoriques.
Un fonctionnement en générateur alternatif autonome est toutefois possible à l'aide de condensateurs connectés sur le stator, à condition qu'il existe un champ magnétique rémanent. On retrouve cette même problématique lorsqu'on cherche à faire fonctionner des machines à courant continu à excitation série en génératrice. À défaut, des dispositifs d'électronique de puissance et une batterie permettent d'amorcer le fonctionnement en génératrice autonome. Cette solution est mise en œuvre pour produire de l'électricité à l'aide d'éoliennes ou de groupes électrogènes, constitués d'une génératrice couplée à un moteur à combustion interne.
Le glissement est une grandeur qui rend compte de l'écart de vitesse de rotation d'une machine asynchrone par rapport à la vitesse de rotation de son champ statorique. Il doit y avoir une différence de vitesse pour que ce type de machine fonctionne car c'est le décalage entre le rotor et le champ statorique qui provoque l'apparition des courants induits au rotor, courants qui créent le champ rotorique. Il est toutefois possible, par exemple pour réaliser des mesures qui permettent d'identifier les caractéristiques de la machine (essai au synchronisme), d'atteindre la vitesse de synchronisme en utilisant un dispositif comportant au moins une deuxième machine (par exemple une machine synchrone utilisée en moteur), qui assurera la production du couple nécessaire au maintien de la rotation.
En régime, le glissement est toujours faible, de l'ordre de quelques pourcents : de 2 % pour les machines les plus grosses à 6 ou 7 % pour les petites machines triphasées, il peut atteindre 10 % pour les petites machines monophasées. Les pertes par effet Joule dans le rotor étant proportionnelles au glissement, une machine de qualité se doit de fonctionner avec un faible glissement.
La fréquence de synchronisme est toujours un sous-multiple entier de la fréquence de l'alimentation électrique :
Soit le nombre de paires de pôles de la machine et la fréquence de l'alimentation. On a :
Le glissement correspond à la différence de vitesse entre le rotor et le champ statorique exprimée sous la forme d'un pourcentage de la fréquence de rotation.
Le glissement peut aussi être calculé à partir des vitesses angulaires
Exemple de plaque signalétique d'une machine asynchrone triphasée industrielle :
Moteur triphasé utilisable en 50 Hz et 60 Hz | Plaque établie conformément à la norme internationale IEC34 | Classement IP (Indice de protection) |
---|---|---|
Référence constructeur précisant notamment :
|
||
Puissance utile nominale | Fréquence de rotation nominale | |
Tension entre phase du réseau d'alimentation pour un couplage étoile | Courant de ligne nominal pour un couplage étoile | |
Tension entre phase du réseau d'alimentation pour un couplage triangle | Courant de ligne nominal pour un couplage triangle | |
Facteur de puissance au régime nominal |
En monophasé :
En triphasé :
Le rendement :
Un variateur de vitesse est un équipement électrotechnique alimentant une machine électrique de façon à pouvoir faire varier sa vitesse de manière continue, de l'arrêt jusqu’à sa vitesse nominale. La vitesse peut être proportionnelle à une valeur analogique fournie par un potentiomètre, ou par une commande externe : un signal de commande analogique ou numérique, issue d'une unité de contrôle. Un variateur de vitesse est constitué d'un redresseur combiné à un onduleur. Le redresseur va permettre d'obtenir un courant quasi continu. À partir de ce courant continu, l'onduleur (bien souvent à modulation de largeur d'impulsion ou MLI[16]) va permettre de créer un système triphasé de tensions alternatives dont on pourra faire varier la valeur efficace et la fréquence[17].
Le fait de conserver constant le rapport entre la valeur efficace du fondamental de la tension et la fréquence (U1/f) permet de maintenir un flux tournant constant dans la machine, le couple maximum constant et donc de maintenir constante la fonction reliant la valeur du couple en fonction de (ns - n) (voir § 3-4-2-1 ci-dessous).
Lors d'un démarrage d'une machine asynchrone, le courant d'enclenchement peut atteindre plusieurs fois le courant nominal de la machine[18],[19]. Si l'application utilise un variateur ou un démarreur, c'est ce dernier qui se chargera d'adapter les tensions appliquées à la machine afin de limiter ce courant. En l'absence de variateur de vitesse, il existe plusieurs méthodes permettant de limiter le courant de démarrage. Elles ont été développées avant l'apparition de l'électronique de puissance mais sont encore utilisées de nos jours dans les installations anciennes ou par mesure d'économie pour des applications ne nécessitant pas de variateur en dehors du démarrage.
Plusieurs dispositifs permettent de réduire la tension aux bornes des enroulements du stator pendant la durée du démarrage de la machine ce qui est un moyen de limiter l'intensité du courant de démarrage. L'inconvénient est que le couple moteur est également diminué et que cela augmente la durée avant laquelle la machine atteint le régime permanent.
Lors d'un démarrage étoile-triangle, la machine est d'abord connectée au réseau avec un couplage étoile, puis une fois démarrée, on passe sur couplage triangle[20]. Le fait de démarrer avec un couplage étoile permet de diviser par la tension appliquée[20]. Ainsi, le courant maximal absorbé est trois fois plus faible que lors d'un démarrage directement avec un couplage triangle[20]. Le couple de démarrage est lui aussi trois fois plus faible que lors d'un démarrage en triangle. La surintensité lors du passage étoile-triangle est inférieure au courant d'appel d'un démarrage effectué directement en triangle.
Réalisée simplement à l'aide de contacteurs, cette méthode de démarrage est très économique.
Dans ce mode de démarrage, le stator de la machine asynchrone est relié à un auto-transformateur qui permet d'effectuer un démarrage sous tension variable. La tension est progressivement augmentée, l'intensité du courant ne dépassant pas la valeur maximale désirée. Ceci peut être réalisé par commutation d'enroulements de l'auto-transformateur.
Lors d'un démarrage résistif, on insère des résistances en série avec les enroulements statoriques ce qui a pour effet de limiter la tension à leurs bornes. Une fois le démarrage effectué, on court-circuite ces résistances[20]. Cette opération peut être effectuée progressivement par un opérateur à l'aide de rhéostats de démarrage.
Lors d'un démarrage rotorique, des résistances de puissance sont insérées en série avec les enroulements du rotor. Ce type de démarrage permet d'obtenir un fort couple de démarrage avec des courants de démarrage réduits mais il ne peut être mis en œuvre qu'avec des machines à rotor bobiné muni de contacts glissants (bagues et balais) permettant les connexions électriques des enroulements rotoriques[20]. Ces machines sont d'un prix de revient plus important que leurs homologues dits à « cage d'écureuil ».
Les machines Boucherot type α ont comme particularité d'avoir un stator divisé en deux. Un des stators est fixe, l'autre peut tourner d'un pas polaire. Le rotor, quant à lui, est doté d'une bague très résistive en son centre. Le démarrage se passe ainsi : dans un premier temps, on décale d'un pas polaire les deux stators. Les courants induits créés par chaque stator sont de directions opposées, ils se rebouclent donc au centre du rotor par la bague très résistive. Au fur et à mesure du démarrage, on décale la demi-machine mobile afin que les courants induits qu'il crée soient dans le même sens que ceux de la machine fixe. À la fin, les courants créés par les deux demi-stators sont dans le même sens et ne passent plus par la bague très résistive[21].
Ce type de dispositif, bien que permettant de faire varier la résistance rotorique sans avoir recours à un rotor bobiné, n'est plus utilisé à cause de sa complexité.
Il existe divers types de freinage.
Il est constitué d'un cylindre ferromagnétique entaillé d'encoches permettant d'y loger les bobinages. Ce cylindre est constitué d'un empilement de plaques de tôles feuilletées afin de limiter les courants de Foucault.
Il est courant de réaliser une protection supplémentaire contre les échauffements anormaux des bobinages en plaçant au cœur de ceux-ci soit un disjoncteur thermique, soit un capteur de température, ceci afin de couper l'alimentation électrique en cas de dépassement d'un seuil déterminé de température.
Afin de réaliser le branchement de la machine au réseau, toutes les connexions sont regroupées dans un boîtier, généralement appelé par les électriciens, plaque à bornes. On y retrouve donc six connexions pour les enroulements statoriques, plus éventuellement celles du capteur de température.
On peut distinguer quatre types de rotor :
Il est très difficile, pour une charge donnée et à partir des tensions et des impédances, de calculer les courants dans la machine et d'en déduire le couple et la fréquence de rotation.
Comme pour ces labyrinthes que l'on trouve dans les journaux, il est plus facile de partir du but à atteindre et de remonter vers le départ. On considère donc que l'on connaît les courants. À partir de l'expression des courants statoriques et rotoriques on déduit les flux du champ magnétique qu'ils produisent. Connaissant les courants et les flux, on écrit l'expression des tensions en appliquant la loi d'Ohm et la loi de Faraday, puis on identifie.
On considère que la machine possède une seule paire de pôles[24].
l'angle correspond au décalage angulaire entre le stator et le rotor. On a[25] :
Hypothèses :
Son circuit magnétique est homogène et non saturé. Ses diverses inductances sont constantes. Elle est aussi parfaitement équilibrée :
On fixe l'origine des temps de manière que l'on puisse écrire :
On en déduit les courants des deux autres phases du stator :
Avec : , et : pulsation des courants statoriques.
Avec : , : pulsation des courants rotoriques, et = phase à l'origine de donc variable car l'origine des temps est fixée par .
Notations :
Le flux à travers la phase A du stator est :
On ne change rien à cette expression en ajoutant :
Comme :
On remplace :et par leurs expressions et on utilise :
Or , et
On obtient finalement :
On pose:
Ces grandeurs cycliques permettent d'isoler chaque phase comme si elle était seule, comme si le flux qui la traverse ne dépendait que du seul courant qui alimente cette phase. L'introduction de ces grandeurs cycliques va permettre d'établir des modèles monophasés équivalents.
On pose également :
L'expression du flux devient alors plus simple. On applique la transformation complexe et l'on obtient le flux complexe d'une phase du stator :
Le calcul du flux rotorique se mène de manière identique avec une différence de signe.
Avec l'introduction des grandeurs cycliques
Le flux à travers un enroulement rotorique s'écrit :
Le rotor est en court-circuit.
Comme on a , on obtient :
Sous le vocable schéma équivalent, on désigne un circuit électrique composé de dipôles linéaires permettant de modéliser la machine réelle. Le schéma équivalent le plus pertinent est fonction du domaine d'utilisation et du degré de précision nécessaire. Dans le cas des machines asynchrones, il comprend, au minimum, une association de résistances et d'inductances.
Les deux équations suivantes :
correspondent à un schéma équivalent ne comportant que des tensions et des courants ayant une fréquence identique à celle de l'alimentation qui alimente la machine et dont le schéma est le suivant :
Les circuits magnétiquement couplés peuvent être transformés en de nombreux schémas équivalents (pour plus de détails, on se référera à l'article correspondant). Chacune de ces transformations conduit à un modèle possible pour décrire la machine asynchrone. Dans la pratique, seuls certains modèles sont effectivement utilisés.
Le modèle à fuites secondaires avec l'ensemble ramené au stator est le plus fréquent dans la littérature car il comporte des éléments que l'on peut identifier relativement simplement et de manière suffisamment précise et il est simple d'emploi.
Avec :
Ces grandeurs ne sont pas calculables (en particulier Rr), mais l'important est de savoir que si l'on admet les hypothèses de départ, alors il existe un dipôle identique à celui représenté ci-dessus équivalent à une phase de la machine asynchrone alimentée par un système de tensions triphasées équilibré.
Il est intéressant pour les bilans de puissance de décomposer la résistance en deux termes :
On a considéré que le circuit magnétique était sans pertes, ce qui n'est pas le cas. Pour rendre compte des pertes fer qui dépendent du carré de l'alimentation, on ajoute dans ce modèle une résistance fictive RF en parallèle avec l'inductance statorique.
Après avoir établi que le schéma précédent correspondait à une phase de la machine asynchrone, on peut identifier le modèle correspondant à une machine quelconque en réalisant trois essais :
Réalisé sur une phase de la machine, il permet de mesurer la résistance statorique RS.
Lors d'un essai au synchronisme, le champ tournant et le rotor tournent à la même vitesse. Le glissement g est nul et 1/g tend vers l'infini. Le modèle équivalent d'une phase de la machine devient :
À l'aide d'un wattmètre, d'un ampèremètre et d'un voltmètre, on mesure la puissance active P0, la puissance réactive , le courant efficace IS0 et la tension efficace VS0
on obtient les trois équations :
RS étant connue, on peut calculer les trois inconnues : RF, et V'
Le courant IS0 étant faible lors de l'essai au synchronisme, on peut généralement négliger la chute de tension due à la résistance statorique devant la tension VS0. Les équations deviennent alors :
On calcule alors directement RF et :
À vitesse nulle, le glissement g = 1. Cet essai est réalisé sous tension réduite afin de limiter l'intensité du courant à une valeur acceptable. Le modèle équivalent d'une phase de la machine devient :
À l'aide d'un wattmètre, d'un ampèremètre et d'un voltmètre, on mesure la puissance active P1, la puissance réactive , le courant efficace IS1 et la tension efficace VS1
La tension VS1 étant faible, les courants circulants dans RF et peuvent généralement être négligés devant IS1. Les équations deviennent alors :
L'identification des derniers paramètres de la machine est alors rapide :
Le schéma établi précédemment permet d'obtenir facilement les caractéristiques électromécaniques de la machine asynchrone monophasée :
En effet la puissance électromagnétique utile, c’est-à-dire celle transformée en énergie mécanique correspond pour chaque phase à la puissance consommée par la résistance
La puissance électromécanique totale pour les trois phases a donc pour expression :
Le modèle ci-dessus permet d'obtenir l'expression du couple soit en fonction du glissement, soit en fonction de la vitesse. Le calcul est très simplifié et peut être fait à la main si l'on néglige la résistance statorique. Dans ce cas, on ajoute une erreur de 2 ou 3 %, mais on obtient une courbe dont l'allure est proche de la réalité. De toute façon, on ne doit pas perdre de vue que ce ne sont que des modèles.
Dans le cadre de cette approximation on a :
Avec : valeur efficace de la tension aux bornes d'une des phases du stator de la machine.
De l'expression de la puissance et des deux équations ci-dessus on en déduit l'expression du couple électromagnétique en fonction du glissement g :
Pour une machine à p paires de pôles on a :
Cela conduit à :
Le couple électromagnétique passe par un maximum pour
En introduisant ce couple maximal et le glissement correspondant dans l'équation du couple électromagnétique on obtient la relation :
La courbe représentative de l'expression du couple en fonction du glissement possède une symétrie par rapport à l'origine :
Cette courbe est plus habituelle et plus concrète, elle se déduit simplement de la courbe en fonction du glissement grâce à la relation :
Réglage de la vitesse de rotation des machines asynchrones triphasées[17]
Les onduleurs les plus répandus sont les onduleurs MLI (à modulation de largeur d'impulsion) dont le mode de commande permet de garder le rapport U1/f constant et d'obtenir des courants quasiment sinusoïdaux. U1 étant la valeur efficace du fondamental.
En régime sinusoïdal, la conservation du rapport U/f permet au circuit magnétique d'être dans le même état magnétique quelle que soit la fréquence d'alimentation. Autrement dit, la forme du cycle d'hystérésis parcouru par le circuit magnétique reste identique quelle que soit f. Ainsi, lorsque la fréquence diminue, la valeur efficace du fondamental de la tension diminuant dans les mêmes proportions, il n'y a pas de risque de saturation du matériau magnétique.
Ceci a pour conséquence qu'une commande qui maintient U1/f constant, où U1 représente la valeur efficace du fondamental, permet de conserver la même courbe de couple en fonction du glissement pour n'importe quelle fréquence d'alimentation. Les autres harmoniques présents, multiples de 5 et 7, créent des couples pulsants dont la moyenne est nulle.
Pour cela, la machine asynchrone est alimentée par un onduleur délivrant une tension de fréquence f et dont la valeur efficace du fondamental V1 est telle que le rapport V1/f est maintenu constant[17].
Lorsque le rapport U/f est constant on peut écrire pour la partie linéaire de la caractéristique couple-vitesse :
On reprend l'équation générale du couple :
On note le couple maximal.
On réécrit la relation flux/tension afin de faire apparaître le flux.
On note la valeur efficace du flux nominal.
Si on garde le rapport constant, il est donc possible de déplacer la vitesse à laquelle est disponible. L'expression du couple devient :
Après un développement limité au premier ordre de Tem lorsque tend vers 0, on obtient :
La courbe du couple en fonction de nS - n est unique.
Lors d'un démarrage (faible fem) à fort couple (courant important), la chute de tension due à la résistance statorique devient plus importante que la fem. Il est alors impossible d'obtenir le flux nominal dans la machine grâce à la loi U/f=cst. Pour compenser cela, les variateurs industriels proposent différentes lois U(f). Le choix de la loi à utiliser dépend de l'application.
Une fois que la tension nominale est atteinte, on augmente la fréquence d'alimentation de la machine sans augmenter sa tension. On parle alors de défluxage de la machine. Cela amène bien entendu une baisse du couple maximal délivrable par la machine. Un démarrage dans de telles conditions se fera donc à couple constant puis à puissance constante.
Les procédés de variation de vitesse pour les machines asynchrones sont générateurs de courants harmoniques.
La commande vectorielle est un terme générique désignant l'ensemble des commandes tenant compte en temps réel des équations du système qu'elle commande. Le nom de ces commandes vient du fait que les relations finales sont vectorielles à la différence des commandes scalaires. Les relations ainsi obtenues sont bien plus complexes que celles des commandes scalaires, mais en contrepartie elles permettent d'obtenir de meilleures performances lors des régimes transitoires. Il existe des commandes vectorielles pour tous les types de machines à courant alternatif, aussi bien asynchrones que synchrones[17],[26].
On utilise les notations suivantes :
Les pertes sont généralement notées en minuscule :
Le schéma ci-dessous représente la transmission de la puissance à travers la machine :
est la puissance transmise au rotor
On peut vérifier que , d'où si l'on néglige .
Par rapport au cas précédent, la puissance utile devient la puissance électrique fournie au réseau et la puissance mécanique est la puissance absorbée.
Les pertes sont les mêmes que pour le fonctionnement en moteur.
La constitution interne d'une machine asynchrone monophasée est la même que celle d'une machine triphasée à la différence près, que son stator est composé d'un enroulement et non de trois (ou de deux dans les anciennes machines asynchrones diphasées). Le champ magnétique créé par une bobine monophasée est un champ pulsant et non tournant comme pour celui créé par trois bobines triphasées (ou deux bobines diphasées). Un champ pulsant peut se décomposer en deux champs tournants qui se déplacent dans des sens opposés. Chaque champ tournant tendant à entraîner la machine dans le même sens que lui. Lorsque le rotor est à l'arrêt, le couple créé par chacun des champs tournants est de même valeur. Ainsi, la machine ne peut démarrer. Pour démarrer une telle machine, il faut donc la lancer ou avoir recours à un dispositif annexe. Une fois lancée, et amenée à sa vitesse nominale, la machine possède un glissement proche de 0 pour l'un des champs tournants, et de 2 pour le second. Le couple créé par le premier champ étant plus important que le couple créé par celui de sens contraire, le moteur continue à tourner.
Les machines asynchrones monophasées ont des caractéristiques (couple/puissance massique, rendement, facteur de puissance, etc.) plus faibles que leurs homologues multiphasées. Ces machines sont toujours utilisées en moteur et généralement limitées à des puissances de quelques kilowatts.
Lorsqu'elle est alimentée en monophasé, la machine asynchrone nécessite un système de démarrage. Différentes solutions permettent une différenciation de ces machines :
Le raccordement au réseau ou à un variateur de ces machines, monophasées et triphasées, passe par un bornier (plaque à borne) protégé par un boîtier solidaire de l'ensemble. L'accès au boîtier se fait généralement en démontant un couvercle étanche situé sur le dessus. L'entrée du ou des câbles se fait par un (ou plusieurs) presse-étoupe chargé d'assurer l'étanchéité ainsi que le maintien mécanique du câble d'alimentation.
Les machines asynchrones triphasées sont susceptibles de tourner dans les deux sens de rotation. Qu'elles soient connectées en étoile ou en triangle, l'inversion de leur sens de marche s'effectue simplement en permutant deux des conducteurs d'alimentation, par exemple U1 et V1 sur les schémas ci-dessus. Une permutation circulaire des trois conducteurs n'inverse pas le sens de rotation.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.