Loading AI tools
unité capable de produire de l'électicité à partir d'un moteur à combustion De Wikipédia, l'encyclopédie libre
Un groupe électrogène est un dispositif autonome capable de produire de l'électricité.
La plupart des groupes sont constitués d'un moteur thermique qui actionne un alternateur. Leur taille et leur poids peuvent varier de quelques kilogrammes à plusieurs dizaines de tonnes. La puissance d'un groupe électrogène s'exprime en VA (voltampère), kVA (kilovoltampère) ou MVA (mégavoltampère) selon la puissance. Les unités les plus puissantes sont mues par des turbines à gaz ou de gros moteurs Diesel.
Les groupes électrogènes sont utilisés soit dans les zones que le réseau de distribution électrique ne dessert pas en tant que système d'alimentation autonome, soit pour pallier une éventuelle coupure d'alimentation électrique de celui-ci. Dans le deuxième cas, ils sont alors souvent utilisés en complément d'une alimentation sans interruption constituée d'une batterie d'accumulateurs qui alimente un onduleur. Ces dispositifs sont généralement utilisés dans des situations où l'interruption de l'alimentation électrique entraîne des conséquences graves ou des pertes financières, par exemple dans les hôpitaux, l'industrie y compris l'industrie agroalimentaire, les aéroports, les centres informatiques, dans l'industrie nucléaire, les pompiers pour les interventions, etc.
Ils fonctionnent à partir de tous les carburants. Les plus fréquents sont l'essence, le gazole, le gaz naturel, le GPL, les biocarburants et pour les plus puissants le fioul lourd.
Le groupe peut être mis en fonctionnement de différentes manières : manuellement, électriquement ou grâce à l'air comprimé, selon la puissance.
Le rendement des groupes électrogènes croît avec leur puissance, mais reste limité au maximum que permet le cycle de Carnot, duquel doivent être soustraites les pertes mécaniques et électriques dans l'alternateur et la transmission. En particulier, les groupes de puissance modérée se caractérisent par un médiocre rendement et une consommation élevée.
Par exemple, pour un produit commercial qui délivre 5 500 W, mû par un moteur à essence de 9,55 kW qui consomme environ 2,5 L de carburant à l'heure lorsqu'il est utilisé à 2⁄3 de sa puissance nominale (soit 3 600 W) : compte tenu des pertes thermiques inévitables dans les moteurs à combustion interne, il en résulte un rendement n'excédant pas 40 % (sources fiches constructeurs) du pouvoir calorifique du carburant.[réf. nécessaire]
Un groupe électrogène moderne est équipé de deux régulations. La tension de sortie est stabilisée (par exemple : 230 V) par un dispositif électronique qui agit sur l'alternateur. La vitesse de rotation du moteur et donc de l'alternateur doit aussi rester constante afin de garantir constantes la fréquence et la tension de sortie (50 Hz en Europe). Cette régulation se fait grâce à un dispositif centrifuge analogue au régulateur à boules de James Watt qui commande directement le carburateur ou la pompe d'injection. Un dispositif à induction fondé sur les courants de Foucault tel que celui qui équipe les anciens indicateurs de vitesse des automobiles ou un système électronique peuvent encore remplir cette fonction.
Depuis une dizaine d'années[Quand ?], il existe un type de groupe électrogène (dit inverter) qui fonctionne de manière particulière ; alors que les groupes électrogènes classiques utilisent directement les sorties d'un alternateur monophasé ou triphasé synchrone pour produire de l'énergie, cette technologie utilise un onduleur alimenté par un alternateur triphasé à excitation variable commandée par un régulateur électronique. Ce régulateur est programmé pour produire l'excitation nécessaire afin de délivrer la puissance requise pour alimenter l'onduleur. Le courant triphasé produit est redressé en courant continu puis transformé en courant alternatif par l'onduleur. Cette technique présente plusieurs avantages par rapport aux générateurs classiques :
Il existe également des groupes électrogènes dits « temps zéro » (GTZ) ou groupes no-break. À la différence des groupes électrogènes classiques, ces groupes temps zéro ont un alternateur branché sur le réseau électrique, et en rotation permanente, qui alimente la charge alors que le moteur thermique (Diesel) est à l'arrêt lorsque le secteur est présent. En cas de creux de tension d'alimentation ou de coupure brève, le GTZ dispose d'une réserve d'énergie (batterie électrochimique ou accumulateur cinétique) qui permet de continuer à maintenir la rotation de l'alternateur (et donc de continuer à alimenter la charge). En cas de coupure plus longue, le moteur Diesel est démarré à vide (car l'alternateur est déjà en rotation), lorsqu'il atteint la vitesse nominale, un embrayage à roue libre ou électromagnétique se ferme et, en assurant le couplage du moteur thermique à l'alternateur, permet la reprise de charge tandis qu'un contacteur isole l'alternateur du réseau. Le fonctionnement est alors celui d'un groupe électrogène classique, à la différence que la réserve d'énergie dont dispose le GTZ (cinétique ou électrochimique) permet d'assurer une meilleure qualité d'alimentation puisqu'elle vient en renfort du moteur thermique en cas d'impact de charge, limitant ainsi les variations de fréquence.
Il existe deux principaux types de groupes temps zéro :
Depuis 2020, les 56 réacteurs nucléaires opérationnels en France[b] sont équipés d'un groupe électrogène supplémentaire de dernier recours, dit Diesel d'ultime secours (DUS)[1], qui doit fournir 3,5 MW d'électricité en cas de défaillance des autres systèmes[c]. Cet équipement de près de 70 t fait partie du noyau dur des mesures post-Fukushima, lequel comprend également un centre bunkérisé abritant le centre de gestion de crise et un appoint ultime en eau[3],[4], afin de garantir le refroidissement de chaque réacteur[5],[6].
Ces Diesels d'ultime secours ont été achetés à Westinghouse[7]. Ils connaissent des problèmes de corrosion sur de la boulonnerie et du supportage et plusieurs ont connu des départs de feu (près d'une dizaine en un an et demi) malgré les actions de correction mises en œuvre qui n'ont pas permis d'éviter de nouveaux incidents en 2022[8],[9].
Les groupes électrogènes produisent du dioxyde de carbone, un gaz asphyxiant, ainsi que du monoxyde de carbone, extrêmement toxique et de plus quasi indétectable. Même en bon état et placés dans une pièce aérée comme un garage, mais attenante à une partie de logement occupée, ils peuvent être la cause d'intoxications mortelles[10].
Les groupes électrogènes fonctionnant avec un moteur Diesel produisent aussi des particules qui sont nocives pour les voies respiratoires.
Le fonctionnement d'un groupe électrogène peut poser des problèmes sur la qualité de l'eau et de l'air, ainsi que des nuisances sonores, donc dégrader les conditions de vie à son alentour[11].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.