Loading AI tools
algebraische Struktur Aus Wikipedia, der freien Enzyklopädie
Ein Körper ist im mathematischen Teilgebiet der Algebra eine ausgezeichnete algebraische Struktur, in der die Addition, Subtraktion, Multiplikation und Division auf eine bestimmte Weise durchgeführt werden können.
Die Bezeichnung „Körper“ wurde im 19. Jahrhundert von Richard Dedekind eingeführt.
Die wichtigsten Körper, die in fast allen Gebieten der Mathematik benutzt werden, sind der Körper der rationalen Zahlen, der Körper der reellen Zahlen und der Körper der komplexen Zahlen.
Ein Körper ist eine Menge , versehen mit zwei inneren zweistelligen Verknüpfungen „“ und „“ (die Addition und Multiplikation genannt werden), für die die folgenden Bedingungen, die Körperaxiome, erfüllt sind:
Ein Körper muss also folgende Einzelaxiome erfüllen:
Ein kommutativer unitärer Ring, der nicht der Nullring ist, ist ein Körper, wenn in ihm jedes von Null verschiedene Element ein Inverses bezüglich der Multiplikation besitzt.
Anders formuliert, ist ein Körper ein kommutativer unitärer Ring , in dem die Einheitengruppe gleich ist.
Die Definition sorgt dafür, dass in einem Körper in der „gewohnten“ Weise Addition, Subtraktion und Multiplikation funktionieren sowie die Division mit Ausnahme der nicht lösbaren Division durch 0:
Anmerkung: Die Bildung des Negativen eines Elementes hat nichts mit der Frage zu tun, ob das Element selbst negativ ist; beispielsweise ist das Negative der reellen Zahl die positive Zahl . Allgemein gibt es in einem Körper keinen Begriff von negativen oder positiven Elementen. (Siehe auch geordneter Körper.)
Verzichtet man auf die Bedingung, dass die Multiplikation kommutativ ist, so gelangt man zur Struktur des Schiefkörpers. Es gibt jedoch auch Autoren, die bei einem Schiefkörper explizit voraussetzen, dass die Multiplikation nicht kommutativ ist. In diesem Fall sind die Begriffe Körper und Schiefkörper disjunkt – und nicht hierarchisch zueinander, wie sie es bei Bourbaki sind, der Schiefkörper als Körper und die hier besprochenen Körper als kommutative Körper bezeichnen. Ein Beispiel für einen echten Schiefkörper sind die Quaternionen.
In der analytischen Geometrie werden Körper zur Koordinatendarstellung von Punkten in affinen und projektiven Räumen verwendet, siehe Affine Koordinaten, Projektives Koordinatensystem. In der synthetischen Geometrie, in der auch Räume (insbesondere Ebenen) mit schwächeren Eigenschaften untersucht werden, benutzt man als Koordinatenbereiche („Koordinatenkörper“) auch Verallgemeinerungen der Schiefkörper, nämlich Alternativkörper, Quasikörper und Ternärkörper.
Eine Teilmenge eines Körpers , die selbst mit dessen Operationen wieder einen Körper bildet, wird Unter- oder Teilkörper genannt. Das Paar und heißt Körpererweiterung , oder . Beispielsweise ist der Körper der rationalen Zahlen ein Teilkörper der reellen Zahlen .
Eine Teilmenge eines Körpers ist ein Teilkörper, wenn sie folgende Eigenschaften hat:
Das algebraische Teilgebiet, das sich mit der Untersuchung von Körpererweiterungen beschäftigt, ist die Galoistheorie.
Ein Körper ist ein endlicher Körper, wenn seine Grundmenge endlich ist. Die endlichen Körper sind in folgendem Sinne vollständig klassifiziert: Jeder endliche Körper hat genau Elemente mit einer Primzahl und einer positiven natürlichen Zahl . Bis auf Isomorphie gibt es zu jedem solchen genau einen endlichen Körper, der mit bezeichnet wird. Jeder Körper hat die Charakteristik . Im Artikel Endlicher Körper werden die Additions- und Multiplikationstafeln des gezeigt bei farbiger Hervorhebung von dessen Unterkörper .
Im Spezialfall erhalten wir zu jeder Primzahl den Körper , der isomorph ist zum Restklassenkörper und Primkörper der (Primzahl)charakteristik genannt wird. Für ist niemals isomorph zu ; stattdessen ist isomorph zu
wobei den Ring der Polynome mit Koeffizienten in darstellt (hier ist ) und ein irreduzibles Polynom vom Grad ist. In ist ein Polynom irreduzibel, wenn aus folgt, dass oder ein Element von ist, also ein konstantes Polynom. Hier bedeutet das von erzeugte Ideal.
Wesentliche Ergebnisse der Körpertheorie sind Évariste Galois und Ernst Steinitz zu verdanken. Weitere Einzelheiten zur Genese des Begriffes liefert Wulf-Dieter Geyer in Kapitel 2 seines Beitrages, in dem er u. a. auf die Rolle Richard Dedekinds hinweist (siehe Literatur).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.