Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
In der Mathematik ist die Einheitengruppe eines Rings mit Einselement die Menge aller multiplikativ invertierbaren Elemente. Sie ist mit der Ringmultiplikation eine Gruppe.
Die Einheitengruppen von (unitären) assoziativen Algebren können als Verallgemeinerung der allgemeinen linearen Gruppe angesehen werden.
Sei ein Ring mit 1. Die Menge aller multiplikativ invertierbaren Elemente (Einheiten) von bildet mit der Ringmultiplikation eine Gruppe. Sie wird Einheitengruppe von genannt. Man schreibt die Einheitengruppe meist als oder als . Die Definition lässt sich auf Monoide übertragen.
Die Einheitengruppe (auch ) eines Körpers heißt multiplikative Gruppe. Sie ist isomorph zur linearen algebraischen Gruppe
also Untergruppe der allgemeinen linearen Gruppe vom Grad 2.
Jede endliche multiplikative Untergruppe eines kommutativen Körpers ist zyklisch (s. Einheitswurzel).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.