Loading AI tools
Zahlen, deren n-te Potenz die Zahl 1 ergibt Aus Wikipedia, der freien Enzyklopädie
In der Algebra werden Zahlen, deren -te Potenz die Zahl 1 ergibt, -te Einheitswurzeln genannt.
Es sei ein kommutativer Ring mit Einselement und eine natürliche Zahl. Ein Element heißt eine n-te Einheitswurzel, wenn es eine der beiden gleichwertigen Bedingungen erfüllt:
Die -ten Einheitswurzeln in bilden eine Untergruppe der multiplikativen Gruppe , die oft mit bezeichnet wird.
Eine -te Einheitswurzel heißt primitiv, falls für gilt.
Im Körper der komplexen Zahlen sind
die -ten Einheitswurzeln, wobei die imaginäre Einheit ist.
Insbesondere ist mit und
eine vierte Einheitswurzel und des Weiteren
Setzt man
so ist primitiv, und diese Zahlen bekommen (in der gleichen Reihenfolge) die einfache Gestalt
Ist klar, um welches es sich handelt, lässt man den unteren Index häufig fallen.
Da und mit und auch Einheitswurzeln sind, ist die Menge aller Einheitswurzeln eine Gruppe. Die Abbildung
ist surjektiv. Der Kern dieser Abbildung ist . Die Gruppe der komplexen Einheitswurzeln ist daher isomorph zu der Faktorgruppe .
Die -ten Einheitswurzeln lassen sich in der komplexen Zahlenebene geometrisch anschaulich interpretieren: Sie sind die auf dem Einheitskreis (mit Mittelpunkt 0 und Radius 1) liegenden Ecken eines regelmäßigen -Ecks, wobei eine der Ecken die Zahl ist, denn diese ist für jedes eine -te Einheitswurzel.
Realteil und Imaginärteil der Einheitswurzeln sind damit die Koordinaten der Ecken des -Ecks auf dem Kreis, d. h. für ist
Mehr siehe unter Radizieren komplexer Zahlen.
Ist eine -te Einheitswurzel, so gilt
Diese Aussage folgt unmittelbar aus der geometrischen Summenformel und ist ein Spezialfall der analogen Aussage für Charaktere von Gruppen.
Die zweiten Einheitswurzeln sind
die dritten Einheitswurzeln sind
die vierten Einheitswurzeln sind wieder von einfacherer Form:
Aus folgt
für . Lösen dieser quadratischen Gleichung liefert . Da der Winkel im 1. Quadranten liegt, ist positiv, und damit ist der Realteil von . Der Imaginärteil ist nach dem Satz des Pythagoras .
Ist die Charakteristik des Körpers , dann ist eine -fache Nullstelle des Polynoms . Ist nicht Teiler der Ordnung , dann gelten die folgenden Aussagen auch für Körper mit Primzahlcharakteristik . Für zusätzliche Eigenschaften der Einheitswurzeln in solchen Körpern siehe Endlicher Körper#Multiplikative Gruppe und diskreter Logarithmus.
Beweis der letzten Aussage: ist eine abelsche Torsionsgruppe. Sie ist also zu einem direkten Produkt
isomorph ( := Menge der positiven Primzahlen). Und die sind zyklisch, weil die Gruppenelemente der Ordnung allesamt Nullstellen von sind und damit Potenzen voneinander. Schließlich ist wegen der Teilerfremdheit von Potenzen verschiedener Primzahlen das direkte Produkt zyklisch.
Im nicht-kommutativen Schiefkörper der Quaternionen hat das Polynom die unendlich vielen Nullstellen
mit
Die Quaternionengruppe ist eine endliche nicht-kommutative Untergruppe der multiplikativen Gruppe . Sie hat die Ordnung 8 und den Exponenten 4. Für weitere endliche Untergruppen von siehe diesen Artikel über endliche Untergruppen der Quaternionen.
Diese beiden speziellen Restklassenringe sind für die Computeralgebra höchst bedeutsam, denn sie ermöglichen eine nochmals drastisch beschleunigte Variante der schnellen diskreten Fouriertransformation. Dies liegt darin begründet, dass Addition und Multiplikation dieser Restklassenringe durch entsprechende zyklische Addition und Multiplikation in einem unwesentlich größeren Restklassenring ersetzt werden können, und damit in binärer Zahlendarstellung die Multiplikation mit Potenzen der Zahl eine zyklische binäre Shift-Operation bedeutet, was wesentlich schneller durchführbar ist als eine allgemeine Multiplikation zweier Zahlen. Die erhebliche Zeitersparnis für die diskrete Fourier-Transformation ergibt sich aus der Tatsache, dass während der schnellen Fouriertransformation viele Multiplikationen mit der gewählten Einheitswurzel durchzuführen sind.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.