Remove ads
Begriff aus dem mathematischen Teilgebiet der linearen Algebra Aus Wikipedia, der freien Enzyklopädie
Die jordansche Normalform ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Benannt wurde sie nach Marie Ennemond Camille Jordan, der sie 1870 für endliche Körper und 1871 im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme für komplexe Matrizen herleitete, die aber auch schon 1868 Karl Weierstraß in seiner Behandlung bilinearer Formen im Komplexen bekannt war[1]. Die jordansche Normalform ist ein einfacher Vertreter der Äquivalenzklasse der zu einer trigonalisierbaren Matrix ähnlichen Matrizen. Die Trigonalisierbarkeit ist gleichbedeutend damit, dass das charakteristische Polynom der Matrix vollständig in Linearfaktoren zerfällt. Matrizen über einem algebraisch abgeschlossenen Körper sind immer trigonalisierbar und daher immer ähnlich einer jordanschen Normalform.
Für jede lineare Abbildung eines endlichdimensionalen Vektorraums, deren charakteristisches Polynom vollständig in Linearfaktoren zerfällt, kann eine Vektorraumbasis gewählt werden, so dass die Abbildungsmatrix, die die Abbildung bezüglich dieser Basis beschreibt, die jordansche Normalform hat. Dies gilt insbesondere für jede nilpotente Matrix.
Für jede beliebige, auch nicht trigonalisierbare Matrix liefert die rationale Normalform oder Frobenius-Normalform einen standardisierten Repräsentanten der Ähnlichkeitsklasse dieser Matrix.
Die jordansche Normalform zu einer quadratischen -Matrix über den komplexen Zahlen ist eine Matrix in der folgenden Blockdiagonalform:
Die Matrix ist die Matrix der Eigenvektoren und Hauptvektoren, aus denen sie spaltenweise besteht. bezeichnet dabei die inverse Matrix von . Die Darstellung von als
wird als Jordanzerlegung (engl. jordan decomposition) von bezeichnet. Die Matrizen heißen Jordanblöcke oder Jordankästchen; sie sind Bidiagonalmatrizen der folgenden Form:
Die sind dabei die Eigenwerte von . Zu jedem Eigenwert gibt es seiner geometrischen Vielfachheit entsprechend viele Jordanblöcke. Die geometrische Vielfachheit ist dabei die Dimension des Eigenraums zum Eigenwert . Die Gesamtdimension aller Jordanblöcke eines Eigenwertes entspricht seiner algebraischen Vielfachheit, d. h. seiner Vielfachheit im charakteristischen Polynom.
In einem Jordanblock sind die sogenannten Jordanketten „gespeichert“ (siehe Hauptvektor). Bestehe z. B. nur aus einem Jordanblock mit Eigenwert und bezeichne einen Hauptvektor -ter Stufe, das heißt, ist ein Eigenvektor zum Eigenwert und es gilt und für , dann gelten und für , das heißt, die Abbildungsmatrix bezüglich der Basis ist tatsächlich ein Jordanblock.
Es existiert noch die alternative Darstellung der Jordanblöcke mit 1 in der unteren Nebendiagonalen.
Im Spezialfall einer diagonalisierbaren Matrix ist die jordansche Normalform eine Diagonalmatrix.
Seien Hauptvektoren der jeweils -ten Stufe, wobei die Dimension des -ten Jordanblocks sei, . Dann ist , definiert durch
eine Transformationsmatrix, die mittels die jordansche Normalform von herstellt.
In Worten: Die Spalten von sind die Eigenvektoren mit den dazugehörigen Hauptvektoren in der Reihenfolge der dazugehörigen Jordanblöcke. Allerdings ist nicht eindeutig bestimmt.
Für die jordansche Normalform eines Endomorphismus eines -dimensionalen -Vektorraums wählt man eine Basis des Vektorraums und berechnet die jordansche Normalform der Abbildungsmatrix von bezüglich der Basis .
Im Folgenden wird daher gesetzt und die komplexe jordansche Normalform einer quadratischen Matrix bestimmt. Die Einheitsmatrix wird mit bezeichnet.
Mit Hilfe des charakteristischen Polynoms
errechnet man aus seinen Nullstellen die paarweise verschiedenen Eigenwerte
Die Eigenwerte werden hier also nicht ihrer Vielfachheit entsprechend aufgeführt.
Hierfür müssen zunächst die Dimensionen der verallgemeinerten Eigenräume bestimmt werden. Das heißt, man berechnet für alle die Zahlen
Insbesondere ist stets und ist gerade die geometrische Vielfachheit des Eigenwerts . Die Dimension des Kerns kann mit Hilfe des Dimensionssatzes aus dem Rang berechnet werden, der beispielsweise mit dem gaußschen Algorithmus bestimmt werden kann.
Die Folge der ist monoton wachsend und wird ab einem bestimmten Wert für stationär, spätestens bei der algebraischen Vielfachheit des Eigenwertes im charakteristischen Polynom. Die Anzahl der Jordanblöcke der Größe zum Eigenwert lässt sich dann mit Hilfe der Formel
berechnen. Außerdem gibt die Gesamtzahl der zu diesem Eigenwert gehörigen Jordanblöcke an.
Die erhaltenen Jordanblöcke schreibt man in eine Matrix und erhält die komplexe jordansche Normalform einer Matrix. Haben alle Blöcke die Größe 1, liegt der Spezialfall einer Diagonalmatrix vor, und ist somit diagonalisierbar.
Das Minimalpolynom von erhält man aus , worin die Größe des größten Jordanblocks zum Eigenwert bezeichnet.
Die jordansche Normalform ist bis auf die Reihenfolge der Jordanblöcke eindeutig bestimmt. Sofern alle Eigenwerte in liegen, sind zwei Matrizen, welche dieselbe jordansche Normalform haben, zueinander ähnlich.
Man betrachte die Matrix , die definiert sei als
Ihr charakteristisches Polynom lautet . Somit besitzt diese Matrix genau einen Eigenwert, nämlich 3. Mit der Abkürzung werden nun die bestimmt:
Es gilt . Somit ist .
Weiterhin ist die Nullmatrix, also gilt und somit und die Folge wird ab dieser Stelle stationär.
Damit folgt: Es gibt Jordanblöcke, davon
Somit ist die jordansche Normalform von . Das Minimalpolynom von ist .
Nun soll eine Basistransformationsmatrix bestimmt werden, die
erfüllt. Sie ist durch diese Gleichung bekanntlich nicht eindeutig bestimmt. Das Standard-Verfahren verwendet die vorherige Kenntnis der komplexen jordanschen Normalform .
Ein gängiges Verfahren, um eine Basistransformation zu erhalten, ist das folgende: Man bestimme (wie auch bei obigem naiven Ansatz) zunächst die Jordannormalform . Dann hat man insbesondere schon alle Eigenwerte berechnet sowie die Kerne für alle , worin die Dimension des größten Jordanblocks zum Eigenwert bezeichnet. Anschließend arbeite man zur Bestimmung einer regulären Matrix mit die Blöcke nacheinander ab. Dabei ist zu beachten, dass man bei Jordanblöcken zum selben Eigenwert stets vom größten Block zum kleinsten Block vorgeht.
Zu jedem Block der Größe und Eigenwert werden Spalten der Basistransformationsmatrix nach einem bestimmten Schema bestimmt. Wenn der Block in die Spalten belegt, so werden die Vektoren in ebenso (von links nach rechts) in die Spalten eingefügt. Die Vektoren werden nun wie folgt bestimmt:
Nachdem man auf obige Weise alle Jordanblöcke abgearbeitet hat, wurden am Ende alle Spalten von aufgefüllt. Es gilt: Die Matrix ist regulär und erfüllt , und ihre Spalten bilden eine Basis, bezüglich deren die Darstellung besitzt.
Wird die alternative Darstellung der Jordanblöcke gewählt, d. h. mit 1 in der unteren Nebendiagonalen, muss lediglich die Reihenfolge der Basisvektoren pro Jordanblock umgekehrt werden.
Als erläuterndes Beispiel betrachte man hierzu die Matrix
wie oben. Es gilt
Ihre Jordannormalform lautet
Man beginne mit dem ersten Jordanblock der Dimension 2. Dazu wähle man
beliebig, beispielsweise . Dann ist zu wählen. Daraus erhält man . Nun gehe man zum zweiten Jordanblock der Größe 2 über. Man wähle nun
beliebig, beispielsweise . Dann ist , und man landet bei . Schließlich ist der letzte Jordanblock (der Größe 1) an der Reihe. Man wähle hierzu
beliebig, beispielsweise . Dann ist eine reguläre Matrix mit .
Eine nilpotente Matrix hat ausschließlich den Eigenwert null, weswegen die Hauptdiagonale ihrer jordanschen Normalform aus Nullen besteht. Sei der Jordanblock der Größe zum Eigenwert null. Dann ist jede nilpotente n×n-Matrix ähnlich zu einer eindeutig bestimmten Blockdiagonalmatrix[2]
mit
Die Partitionsfunktion gibt die Anzahl der Äquivalenzklassen für nilpotente n×n-Matrizen an.
Mit jeder Potenz von entfernen sich die Einsen um einen Schritt von der Hauptdiagonalen. In ist der Abstand per definitionem eins, in zwei, in ist der Abstand . Das heißt, ist nilpotent mit einem Nilpotenzgrad kleiner oder gleich .
Sei die Diagonalmatrix, deren Hauptdiagonale dieselbe ist wie die der jordanschen Normalform einer trigonalisierbaren Matrix, und sei die Matrix, die aus entsteht, indem die Hauptdiagonale mit Nullen belegt wird. Dann liegt die Summenzerlegung
vor. Somit lässt sich jede trigonalisierbare Matrix in eine diagonalisierbare und eine nilpotente Matrix additiv zerlegen. Siehe auch Schursche Normalform und Jordan-Chevalley-Zerlegung eines Endomorphismus.
Betrachtet man reelle Matrizen, so zerfällt deren charakteristisches Polynom im Allgemeinen nicht mehr vollständig in Linearfaktoren, sondern nur noch in irreduzible Faktoren, die in diesem Fall stets lineare oder quadratische Faktoren sind. Es stellt sich nun die Frage nach einer Normalform, wenn man ausschließlich reelle Basistransformationen zulässt.
Zu einem quadratischen irreduziblen Faktor mit definiert man als Jordanblock
Wir nennen die Anzahl der Zeilen (bzw. Spalten) die Größe dieses Blocks. Dann bezeichnet man
als reelle jordansche Normalform. Um sie und eine geeignete reelle Matrix zu bestimmen, kann man folgendermaßen vorgehen:
Ein Verfahren, um eine Basistransformation zu erhalten, ist das folgende:
Man betrachte die Matrix , die wie folgt definiert ist
Ihr charakteristisches Polynom lautet , wobei irreduzibel über ist. Nun berechnen wir die jordansche Normalform:
Dieser Kern hat die Dimension 1. Also gibt es nur einen Jordanblock der Größe mindestens 1. Andererseits muss die Summe der Jordanblockgrößen 1 sein (die Potenz von ), so dass es genau einen Jordanblock zum Eigenwert 1 gibt, und er hat die Größe 1. Weiter hat
die Dimension 2, so dass es demzufolge nur Jordanblock der Größe mindestens 2 gibt. Da die Summe der Jordanblockgrößen 4 sein muss (das Doppelte der Potenz von ), ergibt sich, dass dieser eine Jordanblock die Größe 4 besitzt. Außerdem errechnen wir
Somit ist die reelle jordansche Normalform von .
Zum Vergleich lautet die komplexe jordansche Normalform .
Zum Berechnen einer Basistransformationsmatrix beginne man mit dem ersten reellen Eigenwert und dann mit dem (ersten) Jordanblock der Dimension 1. Man wähle
beliebig, also beispielsweise . Daraus erhält man .
Nun gehe man zum ersten irreduziblen Faktor (komplexen Eigenwert) und dann zum Jordanblock der Größe 4 über. Dazu wähle man
beliebig, beispielsweise . Dann ist , und zu wählen. Daraus erhält man: . ist eine reguläre Matrix mit .
Die jordansche Normalform kann noch weiter verallgemeinert werden auf allgemeine Körper. In diesem Zusammenhang wird sie häufig auch als Weierstraß-Normalform (bzw. Frobenius-Normalform) bezeichnet. Dies erlaubt eine eindeutige Matrixdarstellung von Endomorphismen von endlichdimensionalen Vektorräumen, bei der sich alle ähnlichen Endomorphismen durch eine eindeutige Matrix darstellen lassen. So können ähnliche lineare Abbildungen identifiziert werden. Das Lemma von Frobenius charakterisiert zueinander ähnliche Matrizen durch die Elementarteiler ihrer charakteristischen Matrizen und liefert die Frobenius-Normalform als Normalform des Vektorraums unter der Operation eines Polynomrings.
Durch die Darstellung in der Weierstraß-Normalform ist der Aufbau des Minimalpolynoms sofort erkennbar und das charakteristische Polynom leicht zu berechnen.
Ein Weg, um aus einer skalaren Funktion eine Matrixfunktion zu bilden, ist über die jordansche Normalform der Matrix. Es gilt
Gegeben sei ein lineares Differentialgleichungssystem (von Gleichungen) erster Ordnung mit konstanten Koeffizienten
durch eine Matrix und eine stetige Funktion . Es ist bekannt, dass die eindeutige Lösung des Anfangswertproblems
gegeben ist durch
worin
die Matrixexponentialfunktion bezeichnet. Man beachte:
Mit anderen Worten: Kennt man eine Darstellung mit der komplexen jordanschen Normalform , so kann man für jedes explizit ausrechnen, so dass zum Bestimmen von
nur noch das Integrationsproblem zu lösen ist, welches im homogenen Fall völlig entfällt.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.