Loading AI tools
Wahrscheinlichkeitsverteilung Aus Wikipedia, der freien Enzyklopädie
Die Gammaverteilung ist eine kontinuierliche Wahrscheinlichkeitsverteilung über der Menge der positiven reellen Zahlen. Sie ist einerseits eine direkte Verallgemeinerung der Exponentialverteilung und andererseits eine Verallgemeinerung der Erlang-Verteilung für nichtganzzahlige Parameter. Wie diese wird sie beispielsweise verwendet
Die Gammaverteilung ist durch die Wahrscheinlichkeitsdichte
definiert. Sie besitzt die reellen Parameter und . Der Parameter ist ein inverser Skalenparameter und der Parameter ist ein Formparameter. Um ihre Normierbarkeit zu garantieren, wird und gefordert. Der Vorfaktor dient der korrekten Normierung; der Ausdruck steht für den Funktionswert der Gammafunktion, nach der die Verteilung auch benannt ist. | |
Die Gammaverteilung genügt damit der Verteilungsfunktion
wobei die regularisierte Gammafunktion der oberen Grenze ist. |
Alternativ zur obigen, im deutschsprachigen Raum üblichen Parametrisierung mit und findet man auch häufig
ist die Umkehrung eines Skalenparameters und ist der Skalenparameter selbst. Dichte und Momente ändern sich dementsprechend bei diesen Parametrisierungen (der Erwartungswert wäre hier beispielsweise beziehungsweise ). Da diese Parametrisierungen im angelsächsischen Raum vorherrschen, werden sie besonders häufig in der Fachliteratur verwendet. Um Missverständnissen vorzubeugen, wird empfohlen, die Momente explizit anzugeben, also beispielsweise von einer Gammaverteilung mit Erwartungswert und Varianz zu sprechen. Hieraus sind dann Parametrisierung und die entsprechenden Parameterwerte eindeutig rekonstruierbar.
Die Dichte besitzt für an der Stelle ihr Maximum und für an den Stellen
Wendepunkte.
Der Erwartungswert der Gammaverteilung ist
Die Varianz der Gammaverteilung ist
Die Schiefe der Verteilung ist gegeben durch
Die Gammaverteilung ist reproduktiv: Die Summe aus den stochastisch unabhängigen gammaverteilten Zufallsvariablen und mit den Parametern und bzw. , ist wiederum gammaverteilt mit den Parametern und .
Die charakteristische Funktion hat die Form
Die momenterzeugende Funktion der Gammaverteilung ist
Die Entropie der Gammaverteilung beträgt
wobei die Digamma-Funktion bezeichnet.
Sind und unabhängige gammaverteilte Zufallsgrößen dann ist auch die Summe gammaverteilt, und zwar
Allgemein gilt: Sind stochastisch unabhängig dann ist
Somit bildet die Gammaverteilung eine Faltungshalbgruppe in einem ihrer beiden Parameter.
Wenn und unabhängige gammaverteilte Zufallsvariablen sind mit den Parametern bzw. , dann ist die Größe betaverteilt mit Parametern und , kurz
Die Erlang-Verteilung mit dem Parameter und Freiheitsgraden entspricht einer Gammaverteilung mit den Parametern und und liefert die Wahrscheinlichkeit der Zeit bis zum Eintreffen des -ten seltenen, Poisson-verteilten Ereignisses.
Ist Gamma-verteilt, dann ist Log-Gamma-verteilt.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.