Remove ads
Aus Wikipedia, der freien Enzyklopädie
Teilbarkeit ist eine mathematische Beziehung zwischen zwei ganzen Zahlen. Eine ganze Zahl ist durch eine andere ganze Zahl teilbar, wenn bei der Division kein Rest verbleibt, also die „Geteilt-Rechnung aufgeht“. So ist beispielsweise die Zahl 8 durch 4 teilbar, da 8 : 4 genau 2 ergibt; somit ist 4, aber auch 2, Teiler von 8. Dagegen ist die Zahl 9 nicht durch 4 teilbar, weil die 4 zweimal in die 9 „geht“, aber ein Rest von 1 übrig bleibt. Einen Sonderfall bildet die 0, die ein Teiler von sich selbst ist, obwohl Division durch 0 im Allgemeinen nicht definiert ist.
Die Zahl 11 hat nur zwei Teiler: 1 und die Zahl 11 selbst. Solche Zahlen nennt man Primzahlen. Die Zahl 12 dagegen hat viele Teiler: 1, 2, 3, 4, 6 und 12. Solche Zahlen nennt man hochzusammengesetzte Zahlen.
Die Funktion, die einer natürlichen Zahl die Anzahl ihrer Teiler zuordnet, ist eine zahlentheoretische Funktion (die Teileranzahlfunktion). In der elementaren Zahlentheorie ist der Begriff Teilbarkeit auf natürliche Zahlen beschränkt. In der Algebra dagegen wird der Begriff Teilbarkeit auf Integritätsringe, kommutative Ringe und nicht-kommutative Ringe erweitert.
Eine ganze Zahl teilt eine ganze Zahl genau dann, wenn es eine ganze Zahl gibt, so dass ist. Man sagt dann „ ist Teiler von “, „ teilt “, „ ist teilbar durch “, oder „ ist ein Vielfaches von “. Man schreibt dafür
und nennt die Teilerrelation. Für das Gegenteil, wenn es also keine ganze Zahl gibt mit , schreibt man:
Insbesondere für Primzahlpotenzen gibt es die Sprechweise: teilt die ganze Zahl exakt, geschrieben
wenn die größte Potenz der Primzahl ist, die teilt, in Formeln: ; Beispiel: Die exakte Teilbarkeit von durch hat die Teilerfremdheit von und zur Folge: [1] Die Definition der exakten Teilbarkeit ist auch auf andere Zahlen als Primzahlpotenzen anwendbar; Beispiel:
Da für alle gilt, ist ein Teiler von und, da für jedes von keiner anderen Zahl.
Schreibt man denselben Sachverhalt in der Form , so erkennt man, dass jede Zahl ein Teiler von ist.
Die ist das neutrale Element der Multiplikation, d. h. die Multiplikation mit ändert einen Ausgangswert nicht. Zu den Elementen gibt es ein multiplikatives Inverses, nämlich ein Element mit . Solche Elemente werden Einheiten des Rings genannt. Einheiten sind triviale Teiler einer jeden ganzen Zahl. Die Einheiten des Rings der ganzen Zahlen sind gerade die Zahlen . (Die Einheiten eines Rings bilden eine multiplikative Gruppe.)
Es gelte und . Ist keiner der trivialen Teiler , so nennt man einen nichttrivialen Teiler oder echten Teiler von . Eine ganze Zahl, die nicht Einheit ist und die nur die trivialen Teiler besitzt, nennt man Primelement und, wenn sie ist, Primzahl. Ist eine Primzahl, so heißt Primteiler oder Primfaktor von .
Die Menge aller Teiler einer natürlichen Zahl nennt man die „Teilermenge von “. Die Quasiordnung der Teilbarkeit induziert auf ihr die Struktur eines Verbandes, man spricht deshalb auch vom „Teilerverband von “.
Die Menge aller Vielfachen einer natürlichen Zahl heißt entsprechend Vielfachenmenge. Bei den ganzen Zahlen ist die Mächtigkeit dieser Menge abzählbar unendlich.
Seien , , und ganze Zahlen.
Die natürlichen Zahlen sind mit der Teilbarkeitsrelation eine quasigeordnete Menge, sogar ein vollständiger distributiver Verband, dessen Verknüpfungen durch kgV und ggT gegeben sind. Das kleinste Element ist die ( teilt jedes andere), das größte ist die ( wird von jedem anderen geteilt).
Will man für eine Zahl eine Teilbarkeitsregel mit Quersummen aufstellen, so sucht man nach einem Vielfachen, das entweder oder für ein beliebiges ist. Im ersten Fall kann die Teilbarkeit mit der nichtalternierenden -Quersumme, im zweiten Fall mit der alternierenden -Quersumme überprüft werden.
Entsprechende Faktoren existieren für alle Zahlen, die mit 10 teilerfremd sind. Allerdings ist die Prüfung zum Teil schon für relativ kleine Zahlen unpraktisch (siehe zum Beispiel die unten angegebenen Regeln für Teilbarkeit durch 17 und 19).
Für die Teilbarkeit von Zahlen unter 10 kann man noch ausnutzen, dass eine Ziffer, die größer gleich der Zahl ist, um diese verringert werden kann. So ist bei der Teilbarkeit durch 7 und dem Beispiel 3815 die Ziffer 8 größer gleich 7, also kann man auch direkt 3115 prüfen. Der Grund ist hier, dass 700 natürlich auch durch 7 teilbar ist (allgemein ).
Ist ein Vielfaches der betrachteten Zahl , dann gilt die Teilbarkeitsregel: „Eine Zahl ist genau dann durch teilbar, wenn ihre nichtalternierende -Quersumme durch teilbar ist.“
Beispielsweise ist ein Vielfaches von 3, so dass die Teilbarkeit durch 3 anhand der (1er-)Quersumme geprüft werden kann.
Die Quersumme muss nicht vollständig berechnet werden, sondern es genügt, den Rest einer Ziffer (oder Zifferngruppe) bei Division durch zu berücksichtigen. Es kann auch nach jeder Addition der Rest bei Division durch berechnet werden. Um z. B. zu ermitteln, ob 7654 durch 3 teilbar ist, kann man rechnen:
Da der im letzten Schritt berechnete Rest nicht Null ist, ist 7654 nicht durch 3 teilbar.
Herleitung: ist die Dezimaldarstellung der Zahl , dann gilt
Dabei bezeichnet die -Quersumme von . Diese Quersumme ist also genau dann durch teilbar, wenn durch teilbar ist. Also ist diese Quersumme genau dann durch teilbar, wenn durch teilbar ist.
Ist hingegen ein Vielfaches der betrachteten Zahl , dann gilt die Teilbarkeitsregel: „Eine Zahl ist genau dann durch teilbar, wenn ihre alternierende -Quersumme durch teilbar ist.“
Betrachtet man beispielsweise die Zahl 7, so kann man durch Ausprobieren sehen, dass . Daraus ergibt sich dann die Teilbarkeitsregel mit einer alternierenden 3er-Quersumme.
Herleitung: ist die Dezimaldarstellung der Zahl , dann gilt
Dabei bezeichnet die alternierende -Quersumme von . Diese alternierende Quersumme ist also genau dann durch teilbar, wenn durch teilbar ist. Also ist diese alternierende Quersumme genau dann durch teilbar, wenn durch teilbar ist.
Neben der schon genannten Teilbarkeitsregel mittels der alternierenden 3er-Quersumme gibt es für die 7 weitere, teils einfachere, Teilbarkeitsregeln. Diese ergeben sich aus der Betrachtung von Vielfachen der Zahl, die nah an 10er-Potenzen liegen, also beispielsweise im nächsten Beispiel . Man zieht wiederholt 98 ab, wodurch sich die Hunderter um 1 verringern, die Einer aber um zwei erhöhten (). Im Babylonischen Talmud findet sich die Teilbarkeitsregel, bei der man letztlich nur überprüfen muss, ob eine zweistellige Zahl durch 7 teilbar ist, in folgender Form:[2][3] Eine Zahl wird an der vorletzten Stelle in zwei Teile aufgespalten. Die Ziffern vor der vorletzten Stelle bilden die Zahl und die letzten beiden Ziffern die Zahl . 3815 wird beispielsweise in die Zahlen und zerlegt. Nun zählt man und das Doppelte von zusammen. Ist die Summe durch 7 teilbar, so ist auch die ursprüngliche Zahl durch 7 teilbar. Für 3815 erhält man so . Da 91 durch 7 teilbar ist, ist auch 3815 durch 7 teilbar. Bei sehr großen Zahlen kann man dieses Verfahren solange wiederholen, bis man irgendwann eine zweistellige Zahl erhält. Um die Gültigkeit der Teilbarkeitsregel zu zeigen, betrachtet man die Gleichung
Da 98 und damit auch durch 7 teilbar ist, ist genau dann durch 7 teilbar, wenn durch 7 teilbar ist.
Für eine weitere Teilbarkeitsregel spaltet man eine Zahl in ihre letzte Ziffer und den Rest auf. Zum Beispiel 3815 in die Zahlen und . Dann gilt folgender Satz:
Für 3815 muss man also überprüfen, ob durch 7 teilbar ist. Dazu kann man 371 wieder in 37 und 1 zerlegen. Da durch 7 teilbar ist, sind auch 371 und 3815 durch 7 teilbar.[4] Die Begründung dieser Methode ist, dass 21 durch 7 teilbar ist und um die Einer am Ende der Zahl auf 0 zu bringen, für jeden Einer zwei Zehner abgezogen werden müssen. Danach teilt man die entstehende Zahl dann noch durch Zehn. Ist die Zahl durch 21 teilbar, so ist der Rest bei dieser Methode also 0.
Man kann eine Zahl auch vor der drittletzten Ziffer spalten, so dass die letzten drei Ziffern die Zahl und die Ziffern davor die Zahl bilden. Dann zieht man von ab und prüft, ob diese Differenz durch 7 teilbar ist. Da
und durch 7 teilbar ist, ist genau dann durch 7 teilbar, wenn durch 7 teilbar ist.
Man kann auch die jeweiligen Reste für die einzelnen 10er-Potenzen bestimmen und erhält so folgende Teilbarkeitsregel: Man beginne mit der ersten Ziffer der Zahl von rechts und multipliziere sie mit 1, die zweite Ziffer mit 3, die dritte mit 2, die vierte mit -1, die fünfte mit -3, die sechste mit -2 und dann die nächsten wieder von vorne mit 1, 3, 2, -1, -3, -2 und so weiter. Man berechne dann die Summe dieser Zahlen. Ist sie durch 7 teilbar, so ist es auch die Zahl. Das liegt daran, dass bei 7 noch drei zur 10 fehlen, bei 98 zwei zur 100, bei 1001 jedoch 1 zu viel ist, bei 10003 3 zu viel, bei 100002 2 zu viel und so weiter. Die Wiederholung ergibt sich aus der Überlegung, dass und somit für 100 gilt und somit . Das wird für die weiteren Potenzen fortgeführt (Multiplikation des Restes mit 3), wodurch sich das Muster ergibt. Für 3815 wird also beispielsweise gerechnet: . Die Zahl ist also durch 7 teilbar, da auch 21 durch 7 teilbar ist.
Ein Verfahren, um die Teilbarkeit durch 17 festzustellen, beruht auf der Identität 17 · 6 = 102. Deswegen gilt
Man spaltet also die zu prüfende Zahl vor der vorletzten Stelle in zwei Teile, nimmt das Doppelte des linken Teils und zieht den rechten Teil ab (oder umgekehrt). Ist das Resultat durch teilbar, so gilt dies auch für .
Beispiel: . Also , was durch 17 teilbar ist.
Um die Teilbarkeit durch 19 zu überprüfen, spaltet man eine Zahl in ihre letzte Ziffer und den Rest auf. Zum Beispiel 7904 in die Zahlen und . Dann gilt folgender Satz:
Für 7904 muss man also überprüfen, ob durch 19 teilbar ist. Dazu kann man 798 wieder in 79 und 8 zerlegen. Da durch 19 teilbar ist, sind auch 798 und 7904 durch 19 teilbar.
Bei 37 kann man interessanterweise wieder eine vergleichsweise einfache Regel anwenden: Man beginnt rechts und nimmt die ersten beiden Ziffern als Zahl und zieht 11 mal die nächste Ziffer von rechts ab. Das wiederholt man mit den weiteren Ziffern, also wieder die nächsten zwei als Zahl abtrennen und die dritte 11 mal abziehen. Ist die Summe der Ergebnisse durch 37 teilbar, so ist es auch die Zahl. Beispiel 19758: . Die Zahl ist also durch 37 teilbar.
Für eine beliebige Primzahl bestimmt man die Reste für die Zehnerpotenzen . Es gilt also
Daraus ergibt sich folgende Teilbarkeitsregel: Die Dezimaldarstellung einer Zahl sei . Man beginnt mit der ersten Ziffer der Zahl von rechts und multipliziert sie mit , die zweite Ziffer mit , die dritte Ziffer mit , ..., die -te Ziffer mit und dann die nächsten Ziffern wieder von vorne mit und so weiter. Man berechnet dann die Summe dieser Zahlen. Wenn diese Summe durch teilbar ist, dann ist auch die Zahl durch teilbar.
Herleitung: Es gilt
Nach dem kleinen fermatschen Satz ist , also gilt genau dann, wenn und bei Division durch denselben Rest haben. Daraus folgt, dass die Faktoren alle durch teilbar sind.
Die Zahl ist also genau dann durch teilbar, wenn die Summe durch teilbar ist.
Um die Teilbarkeit durch eine beliebige Zahl zu überprüfen, verwendet man deren Primfaktorzerlegung. Man überprüft dann die Teilbarkeit durch die einzelnen Primzahlpotenzen dieser Zerlegung.
Beispielsweise ist eine Zahl genau dann durch teilbar, wenn sie durch und 3 teilbar ist. Das heißt, ihre letzten beiden Ziffern müssen 00, 25, 50 oder 75 sein und die Quersumme durch drei teilbar sein. Bei multiplikativ zusammengesetzten Zahlen ist die Teilbarkeit eines beliebigen Teilfaktors hinreichend, so ist bspw. durch teilbar, wobei hier die Teilbarkeit der drei Faktoren 4-zyklisch in n ist.
Vergleiche auch Teilbarkeit für alle zu 10 teilerfremden Divisoren.
Für die Teilbarkeit durch die Zahlen von 1 bis 20 gelten folgende Regeln:[6]
Teiler | Teilbarkeitsregel |
---|---|
1 | immer teilbar |
2 | Die letzte Ziffer ist gerade. |
3 | Die Quersumme ist durch 3 teilbar. |
Die Anzahl der Ziffern 1, 4 und 7 minus die Anzahl der Ziffern 2, 5 und 8 ist durch 3 teilbar. | |
4 | Die Zahl, die aus den letzten zwei Ziffern gebildet wird, ist durch 4 teilbar. |
Das Doppelte der vorletzten Ziffer plus die letzte Ziffer ist durch 4 teilbar. | |
5 | Die letzte Ziffer ist durch 5 teilbar. |
6 | Die Zahl ist durch 2 und 3 teilbar. |
7 | Die alternierende 3er-Quersumme ist durch 7 teilbar. |
Multipliziere die Ziffern von rechts nach links in dieser Reihenfolge mit folgenden Zahlen: 1, 3, 2, −1, −3, −2. Wiederhole dies für alle weiteren Ziffern. Die Summe der Ergebnisse ist durch 7 teilbar. | |
8 | Die Zahl, die aus den letzten drei Ziffern gebildet wird, ist durch 8 teilbar. |
Das Vierfach der vorvorletzten Ziffer plus das Doppelte der vorletzten Ziffer plus die letzte Ziffer ist durch 8 teilbar. | |
9 | Die Quersumme ist durch 9 teilbar. |
10 | Die letzte Ziffer ist 0. |
11 | Die 2er-Quersumme ist durch 11 teilbar. |
Die alternierende Quersumme ist durch 11 teilbar. | |
12 | Die Zahl ist durch 3 und 4 teilbar. |
13 | Die alternierende 3er-Quersumme ist durch 13 teilbar. |
Multipliziere die Ziffern von rechts nach links in dieser Reihenfolge mit folgenden Zahlen: 1, −3, −4, −1, 3, 4. Wiederhole dies für alle weiteren Ziffern. Die Summe der Ergebnisse ist durch 13 teilbar. | |
14 | Die Zahl ist durch 2 und 7 teilbar. |
15 | Die Zahl ist durch 3 und 5 teilbar. |
16 | Die Zahl, die aus den letzten vier Ziffern gebildet wird, ist durch 16 teilbar. |
17 | Die alternierende 8er-Quersumme ist durch 17 teilbar. |
Multipliziere die Ziffern von rechts nach links in dieser Reihenfolge mit folgenden Zahlen: 1, −7, −2, −3, 4, 6, −8, 5, −1, 7, 2, 3, −4, −6, 8, −5. Wiederhole dies für alle weiteren Ziffern. Die Summe der Ergebnisse ist durch 17 teilbar. | |
18 | Die Zahl ist durch 2 und 9 teilbar. |
19 | Die alternierende 9er-Quersumme ist durch 19 teilbar. |
Multipliziere die Ziffern von rechts nach links in dieser Reihenfolge mit folgenden Zahlen: 1, −9, 5, −7, 6, 3, −8, −4, −2, −1, 9, −5, 7, −6, −3, 8, 4, 2. Wiederhole dies für alle weiteren Ziffern. Die Summe der Ergebnisse ist durch 19 teilbar. | |
20 | Die letzte Ziffer ist 0 und die vorletzte Ziffer ist gerade. |
In einem Zahlensystem zur Basis lassen sich Teilbarkeitsregeln für Teiler finden, die sich in eine teilerfremde Faktorenzerlegung möglichst kleiner Zahlen zerlegen lässt, die Teiler von , oder sind. sollte dabei möglichst klein sein, für Kopfrechnen sind nur Werte bis maximal 4 sinnvoll.
Die folgenden Teilbarkeitsregeln benutzen andere Stellenwertsysteme:
Weitere Teilbarkeitseigenschaften findet man im Artikel Kongruenz (Zahlentheorie).
Die Teilbarkeitsregel für das Dezimalsystem lässt sich für das Zahlensystem zur Basis verallgemeinern: Ist ein Vielfaches der betrachteten Zahl , dann ist eine Zahl genau dann durch teilbar, wenn ihre nichtalternierende -Quersumme durch teilbar ist.
Die Teilbarkeitsregel für das Dezimalsystem lässt sich für das Zahlensystem zur Basis verallgemeinern: Ist ein Vielfaches der betrachteten Zahl , dann ist eine Zahl genau dann durch teilbar, wenn ihre alternierende -Quersumme durch teilbar ist.
Der Teilbarkeitsbegriff wird auch wesentlich allgemeiner in kommutativen Ringen betrachtet. Die Definition von Teilbarkeit in natürlichen und ganzen Zahlen wird hier direkt übernommen:
Es sei ein kommutativer Ring. Sind Ringelemente, dann ist ein Teiler von , falls ein weiteres Ringelement mit existiert.
In Ringen teilt genau dann , wenn das von erzeugte Hauptideal das von erzeugte umfasst, formal: .
Ein einfaches Beispiel aus den ganzen Zahlen: Das von erzeugte Hauptideal ist die Menge aller Vielfachen von , dementsprechend die Menge aller Vielfachen von . , also ist ein Teiler von .
Die fruchtbarsten Teilbarkeitseigenschaften erhält man in Integritätsringen, das sind nullteilerfreie kommutative unitäre Ringe.
Bei nicht-kommutativen Ringen muss man bei der Teiler- und Vielfachen-Eigenschaft die Seitigkeit (linke, rechte oder zweiseitige) mit angeben. Dies lässt sich mit dem einfachen Teilbarkeitssymbol „“ (dessen symmetrische Gestalt schon einer Spiegelung mit inverser Bedeutung im Wege steht) des kommutativen Falls nicht mehr ausdrücken.
Von zwei Elementen heißt linker Teiler von , falls ein mit existiert. Dann ist auch rechtes Vielfaches von . Diese Teilbarkeit entspricht der Inklusion der Rechtsideale . Entsprechend definiert man rechten Teiler, linkes Vielfaches und, wenn für links wie rechts gültig, auch zweiseitigen Teiler, zweiseitiges Vielfaches.
In Strukturen, in denen auch eine allgemeine Division als Umkehr der Multiplikation möglich ist (Körper und Schiefkörper), wie beispielsweise in den reellen Zahlen, ist die Theorie der Teilbarkeit trivial: Jede Zahl (bzw. jedes Körper-Element) ist durch jede andere Zahl außer teilbar, d. h. auch: alle von 0 verschiedenen Elemente sind Einheiten.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.