Remove ads
matematický pojem From Wikipedia, the free encyclopedia
Limita nekonečné posloupnosti bodů je pojem používaný v matematické analýze a topologii. Limitou je bod, k němuž se posloupnost přiblíží libovolně (méně přesně řečeno: „nekonečně“) blízko; pak říkáme, že posloupnost k tomuto bodu konverguje.
Pojem „bod“ přitom může znamenat např. reálné číslo (jako bod na reálné ose), komplexní číslo, bod v rovině, prostoru (i vícerozměrném), nebo v jakémkoli metrickém či dokonce topologickém prostoru. Ve všech těchto případech platí, že bod je limitou nekonečné posloupnosti , právě když v každém (tj. „sebemenším“) jeho okolí leží všechny členy posloupnosti od jistého indexu , nebo ekvivalentně: všechny členy až na konečně mnoho. Liší se ovšem definice pojmu „okolí“.
V případě reálných čísel je tedy limitou posloupnosti takové reálné číslo , k němuž pro každé (tj. „sebemenší“) kladné reálné číslo existuje přirozené číslo takové, že pro každé přirozené platí , tj. -tý člen posloupnosti leží v -okolí čísla .
V reálných číslech i ostatních metrických prostorech může mít posloupnost nejvýše jednu limitu; v některých topologických prostorech to však neplatí. Posloupnost nemusí mít žádnou limitu. Metrický prostor, v němž má limitu každá cauchyovská posloupnost - tj. taková, jejíž prvky se k sobě navzájem libovolně („nekonečně“) blíží - nazýváme úplným prostorem. Takovým jsou např. reálná čísla, ale ne racionální čísla.
Pojem konvergence posloupnosti se liší od konvergence řady: například posloupnost konverguje jako posloupnost k nule, ale jako řada diverguje k plus nekonečnu.
Pojem limity byl zaveden pro posloupnost reálných čísel a zobecněn pro posloupnost bodů v rovině, prostoru, případně -rozměrném prostoru . Toto bylo posléze dále zobecněno pro posloupnost prvků libovolného metrického prostoru či dokonce topologického prostoru.
Tyto definice jsou v plném souladu, tj. např. posloupnost reálných čísel konverguje podle definice pro reálná čísla, právě když konverguje jako posloupnost prvků prostoru reálných čísel vybaveného obvyklou metrikou nebo běžnou topologií. Vždy platí, že číslo je limitou posloupnosti, pokud v každém jeho okolí leží všechny členy posloupnosti až na konečně mnoho.
Nekonečnou posloupností reálných čísel (pro stručnost píšeme jen ) se rozumí zobrazení, které libovolnému přirozenému číslu („indexu“) přiřadí reálné číslo. Například posloupnost neboli indexu 3 přiřadí číslo 9, protože třetím členem je devítka.
Pro definici limity reálných čísel není zapotřebí zavádět topologické pojmy „okolí“ či „otevřená množina“. Číslo je limitou posloupnosti , jestliže pro libovolné existuje takové, že pro každé platí .
Např. pro posloupnost platí, že
Podobně lze ukázat, že nekonverguje k žádnému číslu kromě nuly; to ostatně plyne i z jednoznačnosti limity.
V metrických prostorech (včetně roviny reprezentované jako , prostoru a vícerozměrného prostoru ) je definice stejná, nahradíme-li výraz výrazem „vzdálenost od .“ Limita je tedy bod, ke kterému se posloupnost „přiblíží neomezeně blízko a v blízkosti zůstane“, nebo formálněji řečeno, pro každé jen konečně mnoho prvků posloupnosti je od vzdáleno o nebo více.
Používá se následující názvosloví:
Proto lze též definici formulovat tak, že limitou posloupnosti je takový bod, v jehož každém -okolí leží skoro všechny její členy.
Například posloupnost , tj. nemá žádnou limitu. Pro (nebo lze použít i či ) sice v -okolí bodu leží nekonečně mnoho prvků posloupnosti, ale nikoli skoro všechny. Těch, které v něm neleží, je rovněž nekonečně mnoho.
Neformálně řečeno, typický (ne však každý) topologický prostor vznikne z metrického prostoru tím, že si „zapamatujeme“, které množiny jsou otevřené, ale „zapomeneme“ metriku. Každý metrický prostor je tedy i topologickým prostorem.
Používají se tyto pojmy:
Souvislost mezi topologickou a metrickou definicí limity je následkem toho, že:
Z těchto důvodů jsou následující tři definice limity ekvivalentní; první lze použít jen v metrických prostorech, zbylá dvě ve všech topologických:
V topologii se jako definice limity používá poslední varianta.
V metrickém postoru (např. na reálných číslech) může mít posloupnost jen jednu limitu. Kdyby existovaly dvě různé limity , označme jejich vzájemnou vzdálenost . V případě reálných čísel to znamená . Pak by existovalo takové, že všechny prvky posloupnosti od jsou od vzdáleny o méně než , a obdobně by existovalo pro . Pro každé větší než i to vede ke sporu s trojúhelníkovou nerovností, která říká, že vzdálenost od být větší, než součet vzdáleností od a . Např. v reálných číslech to znamená, že , tj. , což pro kladné nemůže nastat. (Důkaz by byl korektní, i kdybychom zvolili .)
Tvrzení, že posloupnost může mít právě jednu limitu, neplatí ve všech topologických prostorech. Platí v právě těch prostorech , v nichž každé dva různé prvky lze „oddělit otevřenými množinami“, tj. najít otevřené nadmnožiny těchto prvků, které mají prázdný průnik. Jinými slovy, limita je jednoznačná tehdy a jen tehdy, pokud pro každé existují otevřené množiny takové, že .
To platí v každém topologickém prostoru, který vznikl z metrického prostoru („zapomenutím“ metriky, ale „nezapomenutím“, které množiny jsou otevřené), jak plyne z důkazu jednoznačnosti pro metrické prostory. Příkladem prostoru, v němž to neplatí, je takový, že není otevřená množina; přitom nezáleží na tom, zda je otevřená. Posloupnost samých jedniček zde konverguje k i , protože všechny její prvky leží v každé otevřené množině, která obsahuje , i v každé, která obsahuje . Jediná otevřená množina obsahující je totiž celá .
Pokud k libovolnému číslu existuje přirozené číslo takové, že pro všechna platí , pak říkáme, že posloupnost má vlastní limitu , popř. že posloupnost konverguje k číslu :
Pokud má posloupnost vlastní limitu, pak ji označujeme jako konvergentní. V opačném případě hovoříme o divergentní posloupnosti.
K ověření konvergence lze použít tzv. Bolzano-Cauchyovu podmínku, která říká, že existuje-li ke každému takové přirozené číslo , že pro libovolnou dvojici indexů platí , pak je posloupnost konvergentní. V úplných metrických prostorech se jedná o nutnou a postačující podmínku konvergence posloupnosti. Posloupnost splňující BC podmínku se také nazývá Cauchyovská posloupnost.
Pokud k libovolnému číslu existuje přirozené číslo takové, že pro všechna platí , pak říkáme, že funkční posloupnost bodově konverguje v bodě k limitní funkci :
Pokud uvedená limita neexistuje, pak posloupnost označíme jako bodově divergentní.
Pokud k libovolnému číslu existuje přirozené číslo takové, že pro všechna a pro všechny body platí , pak říkáme, že funkční posloupnost stejnoměrně konverguje na intervalu k limitní funkci :
Podle Bolzano-Cauchyovy podmínky je posloupnost na intervalu stejnoměrně konvergentní tehdy a pouze tehdy, pokud lze ke každému najít takové přirozené číslo , že pro každou dvojici a každé platí .
Pokud jsou funkce na intervalu spojité a posloupnost je na stejnoměrně konvergentní, pak je na intervalu spojitá také limitní funkce .
Říkáme, že posloupnost je
Posloupnost nemusí mít žádnou limitu. Metrický prostor, v němž má limitu každá cauchyovská posloupnost - tj. taková, jejíž prvky se k sobě navzájem libovolně (méně přesně řečeno: „nekonečně“) blíží - nazýváme úplným prostorem.
Reálná čísla jsou úplným prostorem, kdežto racionální čísla ne, protože např. posloupnost racionálních čísel konverguje v prostoru reálných čísel k Ludolfovu číslu , ovšem v racionálních číslech žádnou limitu nemá, tj. není konvergentní.
Některé metrický prostory jsou zároveň normovanými prostory, a to když na nich zároveň existuje struktura vektorového prostoru, s níž metrika koresponduje, nebo dokonce unitárními prostory, pokud má některé vlastnost shodné jako skalární součin. Pokud je normovaný (resp. unitární) prostor zároveň úplný, nazývá se Banachův prostor (resp. Hilbertův prostor).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.