Remove ads
From Wikipedia, the free encyclopedia
Stejnoměrná konvergence posloupnosti funkcí je druh konvergence. Posloupnost funkcí konverguje stejnoměrně k funkci (nazývané též limitní funkce), pokud rychlost konvergence nezávisí na hodnotě x. Stejnoměrná konvergence implikuje konvergenci bodovou, Vztah mezi těmito konvergencemi popisuje Diniho věta.[1]
Stejnoměrnou konvergenci v metrickém prostoru definujeme takto
či ekvivalentně
. Kde M je množina z daného prostoru.[2]
Tedy posloupnost konverguje, pokud ke každému kladnému číslu lze najít index, od kterého je každý prvek posloupnosti v -ovém okolí limitní funkce. Či ekvivaletně jestliže limita supréma vzdálenosti jednotlivých prvků posloupnosti a limitní funkce je nula.
K zavedení pojmu stejnoměrné konvergence funkcí z do nestačí, aby byl pouze topologický prostor, topologická struktura, k tomu neposkytuje dostatek informací. Na druhou stranu není nutné mít tak detailní strukturu, jakou poskytuje metrický prostor. Proto vznikl pojem uniformní prostor, který obsahuje právě informaci k tomu potřebnou.
Pro neprázdnou množinu , uniformní prostor a množinu funkcí z do se říká, že stejnoměrně konverguje k funkci , pokud ke každému existuje , takové že pro všechna a platí .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.