From Wikipedia, the free encyclopedia
Гэты артыкул уключае апісанне тэрміна «энергія спакою».
Гэты артыкул уключае апісанне тэрміна «E=mc2»; гл. таксама іншыя значэнні.
Эквівале́нтнасць ма́сы і эне́ргіі — фізічная канцэпцыя тэорыі адноснасці, згодна з якою поўная энергія фізічнага аб'екта (фізічнай сістэмы, цела) роўная яго (яе) масе, дамножанай на размерны множнік квадрата хуткасці святла ў вакууме:
дзе — энергія аб'екта, — яго маса, — хуткасць святла ў вакууме, роўная 299 792 458 м/с.
У залежнасці ад таго, што разумеюць пад тэрмінамі «маса» і «энергія», дадзеная канцэпцыя можа быць вытлумачыць дваяка:
Першая інтэрпрэтацыя не з'яўляецца толькі асобным выпадкам другой. Хоць энергія спакою ёсць асобны выпадак энергіі, а практычна роўная у выпадку нулявой ці малой хуткасці руху цела, але мае па-за рамкамі другой інтэрпрэтацыі свой уласны фізічны змест: гэта велічыня з'яўляецца скалярным (г. зн. выражаным адным лікам) інварыянтным (нязменным пры змене сістэмы адліку) множнікам у азначэнні 4-вектара энергіі-імпульсу, аналагічным ньютанаўскай масе і яе прамым абагульненнем[5], і да таго ж з'яўляецца модулем 4-імпульсу. У дадатак, іменна (а не ) з'яўляецца адзіным скалярам, які не толькі характарызуе інертныя ўласцівасці цела пры малых хуткасцях, але і праз які гэтыя ўласцівасці можна дастаткова проста запісаць для любой скорасці руху цела[6].
І такім чынам, — інварыянтная маса — фізічная велічыня, якая мае самастойнае і ў многім фундаментальнейшае значэнне[7].
У сучаснай тэарэтычнай фізіцы канцэпцыю эквівалентнасці масы і энергіі звычайна выкарыстоўваюць у першым сэнсе[8]. Галоўная прычына, чаму прыпісванне масы любому віду энергіі лічыцца чыста тэрміналагічна няўдалым і таму практычна выйшла з ужытку ў стандартнай навуковай тэрміналогіі, заключаецца ў поўнай сінанімічнасці паняццяў масы і энергіі пры таком падыходзе. Акрамя таго, неакуратнае выкарыстанне такога падыходу можа заблытваць[9] і ў канчатковым выніку аказваецца неапраўданым. Такім чынам, у цяперашні час тэрмін «рэлятывісцкая маса» ў прафесійнай літаратуры практычна не сустракаецца, а калі кажуць пра масу, маюць на ўвазе інварыянтную масу. У той жа час тэрмін «рэлятывісцкая маса» ўжываецца для якасных разважанняў у прыкладных пытаннях, а таксама ў адукацыйным працэсе і ў навукова-папулярнай літаратуры. Гэты тэрмін падкрэслівае павелічэнне інертных уласцівасцей рушачага цела разам с яго энергіяй, што само па сабе цалкам змястоўна[10].
У найбольш універсальнай форме прынцып быў сфармулёван упершыню Альбертам Эйнштэйнам у 1905 годзе, аднак уяўленні аб сувязі энергіі і інертных уласцівасцей цела развіваліся і ў больш ранніх працах іншых даследчыкаў.
У сучаснай культуры формула E = mc2 з'яўляецца ледзь не самай вядомай з усіх фізічных формул, што абумоўліваецца яе сувяззю са страшнай магутнасцю ядзернай зброі. Акрамя таго, іменна гэта формула з'яўляецца сімвалам тэорыі адноснасці і шырока выкарыстоўваецца папулярызатарамі навукі[11].
Гістарычна прынцып эквівалентнасці масы і энергіі быў упершыню сфармулёван у сваёй канчатковай форме пры пабудове спецыяльнае тэорыі адноснасці Альбертам Эйнштэйнам. Ён паказаў, што для свабодна рушачай часціцы, а таксама свабоднага цела і ўвогуле любой замкнёнай сістэмы часціц, справядлівы наступныя суадносіны[12]:
дзе , , , — энергія, імпульс, хуткасць і інварыянтная маса сістэмы ці часціцы, адпаведна, — хуткасць святла ў вакууме. З гэтых выразаў відаць, што ў рэлятывісцкай механіцы, нават калі хуткасць і імпульс цела (масіўнага аб'екта) становяцца нулявымі, яго энергія застаецца ненулявою[13], застаючыся роўнаю некаторай велічыні, якая вызначаецца масай цела:
Гэта велічыня называецца энергіяй спакою,[14] і гэты выраз устанаўлівае эквівалентнасць масы цела гэтай энергіі. На аснове гэтага факта Эйнштэйн зрабіў вывад, што маса цела з'яўляецца адною з форм энергіі[3], і што тым самым законы захавання масы і энергіі аб'яднаны ў адзін закон захавання[15].
Энергія і імпульс цела з'яўляюцца кампанентамі 4-вектара энергіі-імпульсу (чатырохімпульсу)[16] (энергія — часавай, імпульс — прасторавымі) і адпаведным чынам пераўтвараюцца пры пераходзе з аднае сістэмы адліку ў другую, а маса цела з'яўляецца лорэнц-інварыянтам, астаючыся пры пераходзе ў іншыя сістэмы адліку нязменнай, і мае сэнс модуля вектара чатырохімпульсу.
Варта таксама адзначыць, што няглядзячы на тое, што энергія і імпульс часціц адытыўныя[17], г. зн. для сістэмы часціц маем:
маса часціц адытыўнаю не з'яўляецца,[12] г. зн. маса сістэмы часціц, у агульным выпадку, не роўная суме мас часціц, з якіх яна складаецца.
Такім чынам, энергія (неінварыянтная, адытыўная, часавая кампанента чатырохімпульсу) і маса (інварыянтны, неадытыўны модуль чатырохімпульсу) — гэта дзве розныя фізічныя велічыні.[7]
Эквівалентнасць інварыянтнай масы і энергіі спакою азначае, што ў сістэме адліку, у якой свабоднае цела знаходзіцца ў спакоі (уласнай), яго энергія (з дакладнасцю да множніка ) роўная яго інварыянтнай масе.[7][18]
Чатырохімпульс ровен здабытку інварыянтнай масы на 4-хуткасць цела.
У спецыяльнай тэорыі адноснасці гэтыя суадносіны з'яўляюцца адпаведнікам класічнага азначэння імпульсу праз масу і хуткасць.
Пасля таго, як Эйнштэйн прапанаваў прынцып эквівалентнасці масы і энергіі, стала відавочна, што паняцце масы можа вытлумачвацца дваяка. З аднаго боку, гэта інварыянтная маса, якая — іменна дзякуючы інварыянтасці — супадае з той масай, што фігуруе ў класічнай фізіцы, з другога — можна ўвесці так званую рэлятывісцкую масу, эквівалентную поўнай (уключаючы кінетычную) энергіі фізічнага аб'екта[4]:
дзе — рэлятывісцкая маса, — поўная энергія аб'екта.
Для масіўнага аб'екта (цела) гэтыя дзве масы звязаны між сабою суадносінамі:
дзе — інварыянтная («класічная») маса, — хуткасць цела.
Энергія і рэлятывісцкая маса — гэта адна і тая ж фізічная велічыня (неінварыянтная, адытыўная, часавая кампанента чатырохімпульсу).[7]
Эквівалентнасць рэлятывісцкай масы і энергіі азначае, што ва ўсіх сістэмах адліку энергія фізічнага аб'екта (з дакладнасцю да множніка ) роўная яго рэлятывісцкай масе.[7][19]
Уведзеная такім чынам рэлятывісцкая маса з'яўляецца каэфіцыентам прапарцыянальнасці паміж трохмерным («класічным») імпульсам і хуткасцю цела[4]:
Аналагічныя суадносіны выконваюцца ў класічнай фізіцы для інварыянтнай масы, што таксама прыводзіцца як аргумент на карысць увядзення паняцця рэлятывісцкай масы. Гэта ў далейшым прывяло к тэзісу, што маса цела залежыць ад хуткасці яго руху.[20]
У працэсе стварэння тэорыі адноснасці абмяркоўваліся паняцці падоўжнай і папярочнай масы масіўнай часціцы (цела). Няхай сіла, што дзейнічае на цела, роўная скорасці змянення рэлятывісцкага імпульсу. Тады сувязь сілы і паскарэння істотна змяняецца ў параўнанні з класічнаю механікаю:
Калі хуткасць перпендыкулярная сіле, то
а калі паралельная, то
дзе — рэлятывісцкі множнік. Таму называюць папярочнаю масаю, а — падоўжнаю.
Сцвярджэнне, што маса залежыць ад хуткасці, увайшло ў многія вучэбныя курсы і дзякуючы сваёй парадаксальнасці стала шырока вядомым сярод неспецыялістаў. Аднак у сучаснай фізіцы пазбягаюць выкарыстоўваць тэрмін «рэлятывісцкая маса», ужываючы замест яго паняцце энергіі, а пад тэрмінам «маса» разумеюць інварыянтную масу (спакою). Сярод іншага, выдзяляюцца наступныя недахопы ўвядзення тэрміна «рэлятывісцкая маса»[8]:
Нягледзячы на названыя недахопы, паняцце рэлятывісцкай масы ўжываецца і ў вучэбнай,[21] і ў навуковай літаратуры. Варта, праўда, адзначыць, што ў навуковых артыкулах паняцце рэлятывісцкай масы выкарыстоўваецца пераважна толькі пры якасных разважаннях як сінонім павелічэння інертнасці часціцы, рушачай з калясветлавою хуткасцю.
У класічнай фізіцы гравітацыйнае ўзаемадзеянне апісваецца законам сусветнага прыцягнення Ньютана, і яго велічыня вызначаецца гравітацыйнай масай цела[22], якая з высокай ступенню дакладнасці роўная па велічыні інертнай масе, пра якую ішла гаворка вышэй, што дазваляе казаць проста пра масу цела[23].
У рэлятывісцкай фізіцы гравітацыя падпарадкоўваецца законам агульнай тэорыі адноснасці, у аснове якой ляжыць прынцып эквівалентнасці, які заключаецца ў тым, што нельга адрозніць з'явы, якія адбываюцца лакальна ў гравітацыйным полі, ад аналагічных з'яў у неінерцыяльнай сістэме адліку, рушачай з паскарэннем, роўным паскарэнню свабоднага падзення ў гравітацыйным полі. Можна паказаць, што гэты прынцып эквівалентны сцвярджэнню аб роўнасці інертнай і гравітацыйнай мас[24].
У агульнай тэорыі адноснасці энергія іграе тую ж ролю, што і гравітацыйная маса ў класічнай тэорыі. Сапраўды, велічыня гравітацыйнага ўзаемадзеяння ў гэтай тэорыі вызначаецца так званым тэнзарам энергіі-імпульсу, які абагульняе паняцце энергіі[25].
У найпрасцейшым выпадку кропкавай часціцы ў цэнтральна-сіметрычным гравітацыйным полі аб'екта, маса якога намнога большая за масу часціцы, сіла, што дзейнічае на часціцу, вызначаецца выразам[8]:
дзе G — гравітацыйная пастаянная, M — маса цяжкага аб'екта, E — поўная энергія часціцы, v — хуткасць часціцы, — радыус-вектар, праведзены з цэнтра цяжкага аб'екта ў пункт знаходжання часціцы. З гэтага выразу відаць галоўная асаблівасць гравітацыйнага ўзаемадзеяння ў рэлятывісцкім выпадку ў параўнанні з класічнай фізікай: яно залежыць не толькі ад масы часціцы, але і ад велічыні і напрамку яе хуткасці. Апошняя акалічнасць, сярод іншага, не дазваляе ўвесці адназначным чынам нейкую эфектыўную гравітацыйную рэлятывісцкую масу, якая зводзіла б закон прыцягнення да класічнага выгляду[8].
Важным гранічным выпадкам з'яўляецца выпадак часціцы з масаю, роўнаю нулю. Прыкладам такой часціцы з'яўляецца фатон — часціца-пераносчык электрамагнітнага ўзаемадзеяння[26]. З прыведзеных вышэй формул вынікае, што для такой часціцы справядлівы наступныя суадносіны:
Такім чынам, часціца з нулявою масаю незалежна ад сваёй энергіі заўсёды рухаецца з хуткасцю святла. Для бязмасавых часціц увядзенне паняцця «рэлятывісцкай масы» асабліва недарэчнае, бо, напрыклад, пры наяўнасці сілы ў падоўжным напрамку хуткасць часціцы пастаянная, і паскарэнне, у выніку, роўнае нулю, што патрабуе бесканечнай па велічыні эфектыўнай масы цела. У той жа час, наяўнасць папярочнай сілы прыводзіць да змянення напрамку хуткасці, і, такім чынам, «папярочная маса» фатона мае канечную велічыню.
Гэтак жа бяссэнсава для фатона ўводзіць эфектыўную гравітацыйную масу. У выпадку цэнтральна-сіметрычнага поля, разгледжанага вышэй, для фатона, падаючага вертыкальна ўніз, яна будзе роўная , а для фатона, што ляціць перпендыкулярна напрамку на гравітацыйны цэнтр, — [8].
Атрыманая А. Эйнштэйнам эквівалентнасць масы цела назапашанай у целе энергіі стала адным з галоўных практычна важных вынікаў спецыяльнай тэорыі адноснасці. Суадносіны паказалі, што ў рэчыве ўтрымліваюцца велізарныя (дзякуючы квадрату хуткасці святла) запасы энергіі, якія можна выкарыстоўваць у энергетыцы і ваенных тэхналогіях[28].
У міжнароднай сістэме адзінак СІ адносіна энергіі і масы E / m выражаецца ў джоўлях на кілаграм, і яна лікава роўная квадрату значэння хуткасці святла c ў метрах у секунду:
Такім чынам, 1 грам масы эквівалентны наступным значэнням энергіі:
У ядзернай фізіцы часта прымяняецца значэнне адносіны энергіі і масы, выражанае ў мегаэлектронвольтах на атамную адзінку масы — ≈931,494 МэВ/а.а.м.
Энергія спакою можа пераходзіць у кінетычную энергію часціц у выніку ядзерных і хімічных рэакцый, калі ў іх маса рэчыва, што ўступіла ў рэакцыю, большая за масу рэчыва, атрыманага ў выніку. Прыкладамі такіх рэакцый з'яўляюцца[8]:
У гэтай рэакцыі выдзяляецца прыкладна 35,6 МДж цеплавой энергіі на кубічны метр метану, што складае прыкладна 10−10 ад яго энергіі спакою. Такім чынам, у хімічных рэакцыях пераўтварэнне энергіі спакою ў кінетычную энергію значна ніжэйшае, чым у ядзерных.
Важна адзначыць, што ў практычных прымяненнях ператварэнне энергіі спакою ў энергію выпраменьвання рэдка адбываецца са стопрацэнтнаю эфектыўнасцю. Тэарэтычна поўным ператварэннем было б сутыкненне матэрыі з антыматэрыяй, аднак у большасці выпадкаў замест выпраменьвання ўзнікаюць пабочныя прадукты і ў выніку гэтага толькі вельмі малая колькасць энергіі спакою ператвараецца ў энергію выпраменьвання.
Існуюць таксама адваротныя працэсы, якія павялічваюць энергію спакою, а значыць і масу. Напрыклад, пры награванні цела павялічваецца яго ўнутраная энергія, у выніку чаго ўзрастае маса цела. Іншы прыклад — сутыкненне часціц. У падобных рэакцыях могуць нараджацца новыя часціцы з масамі, істотна большымі, чым у зыходных. «Крыніцаю» масы такіх часціц з'яўляецца кінетычная энергія сутыкнення.
Уяўленне аб масе, якая залежыць ад хуткасці, і аб існаванні сувязі паміж масай і энергіяй пачало фарміравацца яшчэ да з'яўлення спецыяльнай тэорыі адноснасці. Сярод іншага, у спробах узгадніць ураўненні Максвела з ураўненнямі класічнай механікі некаторыя ідеі былі прапанаваны ў артыкулах М. А. Умава, Дж. Дж. Томсана, О. Хэвісайда, Дж. Сірла , М. Абрахама, Х. Лорэнца і А. Пуанкарэ[11]. Аднак толькі ў А. Эйнштэйна гэта залежнасць універсальная, не звязана з эфірам і не абмежавана электрадынамікай[29].
Лічыцца, што ўпершыню спроба звязаць масу і энергію была зроблена ў працы Дж. Дж. Томсана, якая з'явілася ў 1881 годзе[8]. Томсан у сваёй працы ўводзіць паняцце электрамагнітнай масы, называючы так уклад у інертную масу зараджанага цела, абумоўлены электрамагнітным полем гэтага цела[30].
Ідэя наяўнасці інерцыі ў электрамагнітнага поля прысутнічае таксама і ў працы О. Хэвісайда, выдадзенай у 1889 годзе[31]. Знойдзеныя ў 1949 годзе чарнавікі яго рукапісу паказваюць, што недзе ў гэты ж час, разглядаючы задачу аб паглынанні і выпраменьванні святла, ён атрымлівае суадносіны паміж масай і энергіяй цела ў выглядзе [32][33].
У 1900 годзе А. Пуанкарэ апублікаваў працу, у якой прыйшоў к вываду, што святло як пераносчык энергіі павінна мець масу, вызначаную выразам дзе E — энергія святла, v — хуткасць пераносу энергіі[34].
У працах М. Абрахама (1902 год) і Х. Лорэнца (1904 год) было ўпершыню ўстаноўлена, што, увогуле кажучы, для рушачага цела нельга ўвесці адзін каэфіцыент прапарцыянальнасці паміж яго паскарэннем і дзеючай на яго сілай. Імі былі ўведзены паняцці падоўжнай і папярочнай мас, прымененыя для апісання дынамікі часціцы, рушачай з калясветлавой хуткасцю, з дапамогаю другога закону Ньютана[35][36]. Так, Лорэнц у сваёй працы пісаў[37]:
|
Эксперыментальна залежнасць інертных уласцівасцей цел ад іх хуткасці была паказана ў пачатку XX стагоддзя ў працах В. Кауфмана (1902 год)[38] и А. Бухерэра (1908 год)[39].
У 1904—1905 гадах Ф. Хазэнорль у сваёй працы прыходзіць к вываду, што наяўнасць у поласці выпраменьвання праяўляецца ў тым ліку і так, нібы маса поласці павялічылася[40][41].
У 1905 годзе з'яўляецца адразу цэлы шэраг асноватворных прац А. Эйнштэйна, у тым ліку і праца, прысвечаная аналізу залежнасці інертных уласцівасцей цела ад яго энергіі[42]. Сярод іншага, пры разглядзе выпускання масіўным целам дзвюх «колькасцей святла» ў гэтай працы ўпершыню ўводзіцца паняцце энергіі нерухомага цела і робіцца наступны вывад[43]:
|
У 1906 годзе Эйнштэйн упершыню гаворыць аб тым, што закон захавання масы з'яўляецца ўсяго толькі асобным выпадкам закону захавання энергіі[44].
У больш поўнай меры прынцып эквівалентнасці масы і энергіі быў сфармулёван Эйнштэйнам у працы 1907 года[45], у якой ён піша
|
Пад спрашчаючым дапушчэннем тут маецца на ўвазе выбар адвольнай пастаяннай у выразе для энергіі. У больш падрабязным артыкуле, які выйшаў у тым жа годзе[3], Эйнштэйн заўважае, што энергія з'яўляецца таксама і мерай гравітацыйнага ўзаемадзеяння цел.
У 1911 годзе выходзіць праца Эйнштэйна, прысвечаная гравітацыйнаму ўздзеянню масіўных цел на святло[46]. У гэтай працы Эйнштэйн прыпісаў фатону інертную і гравітацыйную масу, роўную , і вывеў для велічыні адхілення светлавога праменя ў полі прыцягнення Сонца значэнне 0,83 дугавой секунды, што ў два разы менш за правільнае значэнне, атрыманае ім жа пазней на аснове развітай агульнай тэорыі адноснасці[47]. Цікава, што тое ж самае палавіннае значэнне атрымаў І. фон Зольднер яшчэ ў 1804 годзе, але яго праца засталася незаўважанаю[48].
Эксперыментальна эквівалентнасць масы і энергіі была ўпершыню наглядна паказана ў 1933 годзе. У Парыжы Ірэн і Фрэдэрык Жаліё-Кюры зрабілі фотаздымак працэсу ператварэння кванта святла, пераносчыка энергіі, у дзве часціцы з ненулявою масаю. Прыблізна ў той жа час у Кембрыджы Джон Кокрафт і Эрнест Томас Сінтан Уолтан назіралі выдзяленне энергіі пры дзяленні атама на дзве часткі, сумарная маса якіх аказалася меншаю, чым маса зыходнага атама[49].
З моманту адкрыцця формула стала адною з самых вядомых фізічных формул і з'яўляецца сімвалам тэорыі адноснасці. Нягледзячы на тое, што гістарычна формула была ўпершыню прапанавана не Альбертам Эйнштэйнам, цяпер яна звязваецца выключна з яго іменем, напрыклад, іменна гэта формула была выкарыстана ў якасці назвы выпушчанай у 2005 годзе тэлевізійнай біяграфіі вядомага вучонага[50]. Вядомасці формулы садзейнічала шырока выкарыстанае папулярызатарамі навукі контрінтуітыўнае заключэнне, што маса цела павялічваецца з павелічэннем яго хуткасці. Акрамя таго, з гэтай жа формулай звязваецца магутнасць ядзернай энергіі[11]. Так, у 1946 годзе часопіс «Time» на вокладцы адлюстраваў Эйнштэйна на фоне грыба ядзернага выбуху з формулай на ім[51][52].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.