Loading AI tools
来自维基百科,自由的百科全书
拓扑空间(英語:Topological space)是一种賦予「一點附近」這個概念的抽象数学结构;拓扑空间也是一个集合,其元素称为点,由此可以定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。
拓扑結構最實用的動機,在於怎麼去定義「一點的附近」,用以定義函數極限。
然後把開球視為點 附近的「開放邊界區域」。但考慮到「區域」應該是有任意形狀的,那一般的「開放邊界區域」,應該是任取裡面的點 ,都會有一個夠小的開球 完全落在這個區域裡,也就是說,可以定義 的開子集 為滿足如下條件的子集合
這樣定義的開集有一些有趣的性質:
任取兩個 的開子集 ,若 ,根據定義存在 使得
這樣若取 ,則會有:
也就是說, 也是個開集。
(2) 任意個開集的并集也會是開集
若 是一群開集所構成的集合,也就是說
如果取
換句話說:
這樣的話,顯然有
所以 也會是一個開集。
以上的性質促使人們在不依託度量情況下,去定義一個描述「一點的附近」的結構,換句話說,去抽象的定義一群開集是這麼樣的特殊集合,任二開集的交集是開的且任意開集的聯集也是開的。
拓扑结构一词涵盖了开集系,闭集系,邻域系,开核,閉包,导集,滤子等若干概念。可以从这些概念出发,给出若干种等价結構,但大部分書籍都以開集系為準。
根據定义动机一節可以作如下的定義:
的子集族 若滿足以下开集公理
則称 为 的开集系(其中的元素称为开集)或拓扑, 則被稱為一拓扑空間, 內的元素 則称为拓扑空间 的点。
开集系的代號 是字母「O」的德文尖角體,取名自德语形容词「offen」(開的)。
从开集系出发定义其它概念:( 為 的子集)
的子集族 若滿足如下闭集公理:
則称 为 的闭集系(其中的元素称为闭集)。
开集系的代號 是字母「 F」 的德文尖角體,取名自法语动词「fermer」(關閉)的过去分词「fermé」(封閉的)。
為开集系,類似地,對於開集系 ,以下的子集族
為閉集系,所以閉集系跟拓扑是等價的結構。
从闭集系出发定义其它概念:( 為 的子集)
函数 ( 指 的幂集的幂集,也就是由所有子集族所構成的集合)若對任意 满足如下邻域公理:
正式定義 | 直觀解釋 |
---|---|
屬於 的任意元素( 裡的元素都是 的邻域) | |
的任二邻域的交集也是 的邻域 | |
包含任何 的邻域的任意子集也是 的邻域 | |
的每個邻域內有個 的邻域,使的大邻域都是小邻域裡面點的領域 |
这样任意 被称为 的邻域系, 裡的元素 則称为 的邻域。
換句話說,函數 将 的每个点 映射至 ,而 則是所有 的邻域所構成的集族。
邻域系的代號 是字母「 U」 的德文尖角體,取名自德语动词「 umgeben」(環繞)的名詞化「Umgebung」(周圍、環境)。
若取以下的子集族
因為 包含任意邻域, 本身顯然為任意 的領域,故 ;另外空集合 沒有任何屬於它的點,所以根據實質條件的意義,。
若取 ,根據邻域公理的第二項有 ;若取 ,且 ,那換句話說
這樣的話有
那這樣根據邻域公理第三項,,所以 的確是個開集合系。
類似地對於開集系 ,若對任意 取
那 也會符合上面四款邻域系公理(注意到第四項取 ),所以對所有 定義了邻域系等同於定義了一個拓扑。
从邻域系出发定义其它概念:( 為 的子集)
的幂集上的一元运算(即将的子集A映射为的子集)称为闭包运算(像称为原像的闭包)。当且仅当运算满足下述的闭包公理:
集合的闭包通常记为。
从闭包出发定义其它概念:
的幂集上的一元运算(即将的子集A映射为的子集)称为开核运算(像称为原像的开核或内部)。当且仅当运算满足如下开核公理:
集合的开核通常记为。 (显然,开核运算是闭包运算的对偶概念)。
从开核出发定义其它概念:
的幂集上的一元运算(即将的子集映射为的子集)称为导集运算(像称为原像的导集),当且仅当满足以下导集公理:
从导集出发定义其它概念:
同一个全集可以拥有不同的拓扑,有些是有用的,有些是平庸的,这些拓扑之间可以形成一种偏序关系。当拓扑的每一个开集都是拓扑的开集时,称拓扑比拓扑更细,或称拓扑比拓扑更粗。
仅依赖于特定开集的存在而成立的结论,在更细的拓扑上依然成立;类似的,仅依赖于特定集合不是开集而成立的结论,在更粗的拓扑上也依然成立。
最粗的拓扑是由空集和全集两个元素构成的拓扑,最细的拓扑是离散拓扑,这两个拓扑都是平庸的。
在有些文献中,我们也用大小或者强弱来表示这里粗细的概念。
类似定义拓扑空间,连续映射也有基于开集,闭集,开核,闭包和邻域等概念的等价定义。
拓扑空间作为对象,连续映射作为态射,构成了拓扑空间范畴,它是数学中的一个基础性的範疇。试图通过不变量来对这个范畴进行分类的想法,激发和产生了整个领域的研究工作,包括同伦论、同调论和K-理论。
给定拓扑空间,A是X的子集,有以下概念(继续使用上面的符号):
网的目的在推广序列及极限,网的收性称作Moore-Smith收敛。其关键在於以有向集合代替自然数集。
空间上的一个网是从有向集合映至的映射。
若存在,使得对每个的邻域都存在,使得,则称网收敛至。
几乎所有点集拓扑学的基本概念都能表述作网的收敛性,请参阅主条目网
3点集 X={a,b,c}的拓扑总共有29个,可分为九类,具体如下:
依据点和集合分离的程度、大小、连通程度、紧性等。可以对拓扑空间进行各种各样的分类。并且由于这些分类产生了许多不同的术语。
以下假设X为一个拓扑空间。
详细资料请参照分离公理以及相关条码。有些术语在老的文献中采用了不同地定义方式,请参照分离公理的历史。
(详细资料请参照紧集)
可度量性意味着可赋予空间一个度量,使之给出该空间的拓扑。目前已有许多版本的度量化定理,其中最著名的是Urysohn度量化定理:一个第二可数的正则豪斯多夫空间可被度量化。由此可导出任何第二可数的流形皆可度量化。
对於任一类代数结构,我们都可以考虑其上的拓扑结构,并要求相关的代数运算是连续映射。例如,一个拓扑群乃是一个拓扑空间配上连续映射(群乘法)及(反元素),使之具备群结构。
同样地,可定义拓扑向量空间为一个赋有拓扑结构的向量空间,使得加法与纯量乘法是连续映射,这是泛函分析的主题;我们可以类似地定义拓扑环、拓扑域等等。
结合拓扑与代数结构,往往可以引出相当丰富而实用的理论,例如微分几何探究的主齐性空间。在代数数论及代数几何中,人们也常定义适当的拓扑结构以简化理论,并得到较简明的陈述;如数论中的局部域(一种拓扑域),伽罗瓦理论中考虑的Krull拓扑(一种特别的拓扑群),以及定义形式概形所不可少的I-进拓扑(一种拓扑环)等等。
拓扑空间也可能拥有自然的序结构,例子包括:
n个元素的集上总拓扑数规律
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.