在拓撲學和其相關的數學領域裡,拓撲比較是指在同一個給定的集合上的兩個拓撲結構之間的關係。在一給定的集合上的所有拓撲會形成一個偏序集合。此一序關係可以用來做不同拓撲之間的比較。 定義 定義 — T 1 {\displaystyle {\mathfrak {T}}_{1}} 和 T 2 {\displaystyle {\mathfrak {T}}_{2}} 都是 X {\displaystyle X} 的拓扑,若 T 1 ⊆ T 2 {\displaystyle {\mathfrak {T}}_{1}\subseteq {\mathfrak {T}}_{2}} 称 T 2 {\displaystyle {\mathfrak {T}}_{2}} 比 T 1 {\displaystyle {\mathfrak {T}}_{1}} 更细(fine)或更強(strong),或称 T 1 {\displaystyle {\mathfrak {T}}_{1}} 比 T 2 {\displaystyle {\mathfrak {T}}_{2}} 更粗(coarse)或更弱(weak)。 進一步的,若 T 1 ⊂ T 2 {\displaystyle {\mathfrak {T}}_{1}\subset {\mathfrak {T}}_{2}} ,称 T 2 {\displaystyle {\mathfrak {T}}_{2}} 比 T 1 {\displaystyle {\mathfrak {T}}_{1}} 嚴格细(strictly fine),或称 T 1 {\displaystyle {\mathfrak {T}}_{1}} 比 T 2 {\displaystyle {\mathfrak {T}}_{2}} 嚴格粗(strictly coarse)。[1] 直觀上, T 2 {\displaystyle {\mathfrak {T}}_{2}} 有更多甚至是「更小」的鄰域去逼近拓撲空間中的一點,所以相較之下,其拓撲結構比較「細緻」。但在 T 2 {\displaystyle {\mathfrak {T}}_{2}} 意義下定義的 「極限」要求在更多的鄰域都要能找到逼近點,所以其拓撲結構在收斂的意義下比較「強」。至於嚴格細或粗,就是額外要求 T 1 ≠ T 2 {\displaystyle {\mathfrak {T}}_{1}\neq {\mathfrak {T}}_{2}} 。 二元關係 ⊆ {\displaystyle \subseteq } 在 X {\displaystyle X} 所有的拓撲所組成的集合上定義了一個偏序集合。 例子 X {\displaystyle X} 的拓扑裡,最粗的是由空集和全集两个元素构成的: T = { X , ∅ } {\displaystyle {\mathfrak {T}}=\{X,\,\varnothing \}} 而最细的拓扑是离散拓扑(discrete topology),也就是 X {\displaystyle X} 的冪集: T D = P ( X ) {\displaystyle {\mathfrak {T}}_{D}={\mathcal {P}}(X)} 最粗拓撲 定理 — 設 F ⊆ P ( X ) {\displaystyle {\mathcal {F}}\subseteq {\mathcal {P}}(X)} 是 X {\displaystyle X} 的一個子集族,則: τ F = ⋂ { T | ( T is a topology of X ) ∧ ( F ⊆ T ) } {\displaystyle \tau _{\mathcal {F}}=\bigcap {\bigg \{}{\mathfrak {T}}\,{\bigg |}\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}}){\bigg \}}} 也是 X {\displaystyle X} 的拓扑。 證明 根據定理的條件,對所有集合 A {\displaystyle A} 有: O ∈ τ F ⇔ ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( O ∈ T ) } {\displaystyle O\in \tau _{\mathcal {F}}\Leftrightarrow (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow (O\in {\mathfrak {T}})\right\}} (a) 以下將逐條檢驗拓扑的定義,來驗證 τ F {\displaystyle \tau _{\mathcal {F}}} 的確是 X {\displaystyle X} 的拓扑: (1) X , ∅ ∈ τ F {\displaystyle X,\,\varnothing \in \tau _{\mathcal {F}}} 若 T {\displaystyle {\mathfrak {T}}} 的確是 X {\displaystyle X} 的拓扑,那由拓扑的定義可以得到 X , ∅ ∈ T {\displaystyle X,\,\varnothing \in {\mathfrak {T}}} ,這樣從式(a)右方就可以得到 X , ∅ ∈ τ F {\displaystyle X,\,\varnothing \in \tau _{\mathcal {F}}} 。 (2) U , V ∈ τ F {\displaystyle U,\,V\in \tau _{\mathcal {F}}} 則 U ∩ V ∈ τ F {\displaystyle U\cap V\in \tau _{\mathcal {F}}} 若 U , V ∈ τ F {\displaystyle U,\,V\in \tau _{\mathcal {F}}} ,從式(a)左方有: ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( U ∈ T ) } {\displaystyle (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow (U\in {\mathfrak {T}})\right\}} ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( V ∈ T ) } {\displaystyle (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow (V\in {\mathfrak {T}})\right\}} 所以有: ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( U , V ∈ T ) } {\displaystyle (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow (U,\,V\in {\mathfrak {T}})\right\}} 所以根據拓扑的定義有: ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( U ∩ V ∈ T ) } {\displaystyle (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow (U\cap V\in {\mathfrak {T}})\right\}} 這樣從式(a)右方就可以得到 U ∩ V ∈ τ F {\displaystyle U\cap V\in \tau _{\mathcal {F}}} 。 (3) G ⊆ τ F {\displaystyle {\mathcal {G}}\subseteq \tau _{\mathcal {F}}} 則 ⋃ G ∈ τ F {\displaystyle \bigcup {\mathcal {G}}\in \tau _{\mathcal {F}}} 若 G ⊆ τ F {\displaystyle {\mathcal {G}}\subseteq \tau _{\mathcal {F}}} ,那對任意 g ∈ G {\displaystyle g\in {\mathcal {G}}} ,從式(a)左方有: ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( g ∈ T ) } {\displaystyle (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow (g\in {\mathfrak {T}})\right\}} 所以有: ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( G ⊆ T ) } {\displaystyle (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow ({\mathcal {G}}\subseteq {\mathfrak {T}})\right\}} 所以根據拓扑的定義有: ( ∀ T ) { [ ( T is a topology of X ) ∧ ( F ⊆ T ) ] ⇒ ( ⋃ G ∈ T ) } {\displaystyle (\forall {\mathfrak {T}})\left\{[\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}})\,]\Rightarrow (\bigcup {\mathcal {G}}\in {\mathfrak {T}})\right\}} 所以從式(a)右方可以得到 ⋃ G ∈ τ F {\displaystyle \bigcup {\mathcal {G}}\in \tau _{\mathcal {F}}} 。 綜上所述,來驗證 τ F {\displaystyle \tau _{\mathcal {F}}} 的確是 X {\displaystyle X} 的拓扑。 ◻ {\displaystyle \Box } 根據以上的定理,可以做以下的定義: 定義 — F ⊆ P ( X ) {\displaystyle {\mathcal {F}}\subseteq {\mathcal {P}}(X)} 是 X {\displaystyle X} 的一個子集族,則: τ F = ⋂ { T | ( T is a topology of X ) ∧ ( F ⊆ T ) } {\displaystyle \tau _{\mathcal {F}}=\bigcap {\bigg \{}{\mathfrak {T}}\,{\bigg |}\,({\mathfrak {T}}{\text{ is a topology of }}X)\wedge ({\mathcal {F}}\subseteq {\mathfrak {T}}){\bigg \}}} 稱為包含 F {\displaystyle {\mathcal {F}}} 的最粗拓撲(或最弱拓撲)。 另見 初拓撲-可使集合上的一組映射皆為連續的拓撲之中,最粗糙的拓撲。 終拓撲-可使集合上的一組映射皆為連續的拓撲之中,最精細的拓撲。 參考資料 [1] Munkres, James R. Topology 2nd. Upper Saddle River, NJ: Prentice Hall. 2000: 77–78. ISBN 0-13-181629-2. Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.