Remove ads
来自维基百科,自由的百科全书
黑格納數(Heegner number)指滿足以下性質,非平方數的正整數:其虛二次域Q(√−d)的類數為1,亦即其整數環為唯一分解整環[註解 1][1]。
此條目需要精通或熟悉相關主題的編者參與及協助編輯。 (2016年12月28日) |
此條目需要擴充。 (2010年10月9日) |
黑格納數只有以下九個: 1, 2, 3, 7, 11, 19, 43, 67, 163。(OEIS數列A003173)
高斯曾猜測符合上述特性的數只有九個,但未提出證明,1952年庫爾特·黑格納提出不完整的證明,後來由哈羅德·斯塔克提出完整的證明,即為斯塔克–黑格納定理。
歐拉的質數多項式如下:
在n = 1, ..., 40時會產生不同的40個質數,這相關於黑格納數163 = 4 · 41 − 1.
歐拉公式,取值為1,... 40和以下的多項式
讓取值0,... 39時等效,而Rabinowitz[2]證明了
在時,多項式為質數的充份必要條件為其判別式等於負的黑格納數。
(若代入會得到一定不是質數,因此最大值只能取到)
1, 2和3不符合要求,因此符合條件的黑格納數為,也就表示可以讓歐拉公式產生質數的p為,這些數字被弗朗索瓦·勒·利奧奈稱為歐拉的幸運數[3]。
這個數字是在1859年由數學家夏爾·埃爾米特發現[5],在1975年愚人節的《科學美國人》[6],《數學遊戲》的專欄作家馬丁·加德納故意聲稱這個數字其實是整數,而印度數學天才斯里尼瓦瑟·拉馬努金也預測了這個數很接近整數,因此以他的名字來命名。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.