滲流理論(英語:Percolation theory)是數學和統計物理領域中研究隨機圖上簇的性質的一套理論。舉例來說,假設有一多孔材料,求問液體能否從頂端貫穿該材料直至到達底部。滲流理論將此抽象成以下數學問題:建立一有n × n × n頂點的三維網格模型,相鄰頂點p的概率是連接的,或者說有(1-p)的概率是不連接的,每條邊連接與否相互獨立。滲流理論的基本問題是,當n很大以至於體系可以近似為無限網格時,求問至少存在一條貫穿整個網格的路徑(稱為滲流)對應的p的範圍。這一p的下界,pc,稱為滲流閾值英語Percolation_threshold。該問題由布羅德本特和漢默斯利於1957年提出,[1]其後相關問題被廣泛研究。

上述問題稱為邊滲流鍵滲流(英語:Bond percolation),是滲流理論兩種主要的滲流形式之一。另外一種是點滲流(英語:Site percolation),與邊滲流不同的是,每個頂點p的概率是「占有」的;相應有(1-p)的概率是「空缺」的,如果相鄰兩個頂點皆屬於占有則它們之間是連接的。而問題相同:求給定p值時,整個圖是否滲流。

滲流閾值

根據零一律,一個無限的隨機圖是否滲流的概率要麼為0,要麼為1,處於這一轉折的臨界概率稱為滲流閾值,記作pc。少數簡單模型的滲流閾值有精確的解析解。例如,一維點陣的邊滲流和點滲流閾值均為pc=1,這個解是平凡的;[2]二維方格的滲流閾值曾困擾物理學界20年,直到1980年代由哈里·凱斯滕英語Harry_Kesten給出完整證明,其邊滲流閾值是1/2(參見Kesten (1982))。[3]另一種已知精確解的特殊情況是貝特晶格英語Bethe_lattice(該模型的每一個頂點z個近鄰頂點,如此延伸,沒有迴路),

以下給出d維簡單立方模型的滲流閾值數據:

More information d, 配位數z ...
d 配位數z 點滲流 邊滲流
2 4 0.59274601(2)[4] 1/2
3 6 0.3116077(4)[5] 0.2488126(5)[6]
4 8 0.1968861(14),[7]0.19688561(3)[8] 0.1601314(13),[7] 0.16013122(6)[8]
5 10 0.1407966(15),[7] 0.14079633(4)[8] 0.118172(1),[7] 0.11817145(3)[8]
6 12 0.109017(2),[7] 0.109016661(8)[8] 0.0942019(6),[7] 0.09420165(2)[8]
7 14 0.0889511(9), [7] 0.088951121(1),[8] 0.0786752(3),[7] 0.078675230(2)[8]
8 16 0.0752101(5),[7] 0.075210128(1)[8] 0.06770839(7),[7] 0.0677084181(3)[8]
9 18 0.0652095(3),[7] 0.0652095348(6)[8] 0.05949601(5),[7] 0.0594960034(1)[8]
10 20 0.0575930(1),[7] 0.0575929488(4)[8] 0.05309258(4),[7] 0.0530925842(2)[8]
11 22 0.05158971(8),[7] 0.0515896843(2)[8] 0.04794969(1),[7] 0.04794968373(8)[8]
12 24 0.04673099(6),[7] 0.0467309755(1)[8] 0.04372386(1),[7] 0.04372385825(10)[8]
13 26 0.04271508(8),[7] 0.04271507960(10)[8] 0.04018762(1),[7] 0.04018761703(6)[8]
Close

實際計算中,當網格邊長n較大時,比如n=100,一個體系是否滲流的概率在pc附近的變化已經非常尖銳。

滲流臨界指數

模型在滲流閾值附近的行為可視作一種相變,因為有些表徵性質的物理量是發散的,比如簇的期望大小。標度理論認為模型在滲流閾值的性質可以用一系列臨界指數描述。例如,相互連接的點(點滲流)或邊(邊滲流)構成一個簇。當時,簇大小的分布趨於,其中為簇的大小,為該大小的簇出現的概率,費舍爾指數Fischer exponent)。

又如,兩個距離為的點屬於同一個簇的概率呈指數衰減,其中反常維度Anomalous dimension)。

在滲流閾值時,無限的簇可視作一分形。以該無限的簇上的一點為中心,長度為半徑範圍內屬於該簇點的個數(簇的質量)滿足稱為分形維度Fractal dimension)。以上三個指數滿足

滲流臨界指數及關係也是滲流理論研究的重要內容。

相關

參考資料

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.