在数学和电脑科学中,取整函数是一类将实数映射到相近的整数的函数。[1] 下取整函数 上取整函数 常用的取整函数有两个,分别是下取整函数(英语:floor function)和上取整函数(ceiling function)。 下取整函数即为取底符号,在数学中一般记作 [ x ] {\displaystyle [x]} 或者 ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } 或者 E ( x ) {\displaystyle E(x)} ,在电脑科学中一般记作floor(x),表示不超过x的整数中最大的一个。 [ x ] = max { n ∈ Z ∣ n ≤ x } . {\displaystyle [x]=\max \,\{n\in \mathbb {Z} \mid n\leq x\}.} 举例来说, [ 3.633 ] = 3 {\displaystyle [3.633]=3} , [ 56 ] = 56 {\displaystyle [56]=56} , [ − 2 ] = − 2 {\displaystyle [-2]=-2} , [ − 2.263 ] = − 3 {\displaystyle [-2.263]=-3} 。对于非负的实数,其下取整函数的值一般叫做它的整数部分或取整部分。而 x − [ x ] {\displaystyle x-[x]} 叫做x的小数部分。每个分数都可以表示成其整数部分与一个真分数的和,而实数的整数部分和小数部分是与此概念相应的拓延。 下取整函数的符号用方括号表示( [ x ] {\displaystyle [x]} ),称作高斯符号,首次出现是在卡尔·弗里德里希·高斯的数学著作《算术研究》。 上取整函数即为取顶符号在数学中一般记作 ⌈ x ⌉ {\displaystyle \lceil x\rceil } ,在电脑科学中一般记作ceil(x),表示不小于x的整数中最小的一个。 ⌈ x ⌉ = min { n ∈ Z ∣ x ≤ n } . {\displaystyle \lceil x\rceil =\min\{n\in \mathbb {Z} \mid x\leq n\}.} 举例来说, ⌈ 3.633 ⌉ = 4 {\displaystyle \lceil 3.633\rceil =4} , ⌈ 56 ⌉ = 56 {\displaystyle \lceil 56\rceil =56} , ⌈ − 2 ⌉ = − 2 {\displaystyle \lceil -2\rceil =-2} , ⌈ − 2.263 ⌉ = − 2 {\displaystyle \lceil -2.263\rceil =-2} 。 电脑中的上取整函数和下取整函数的命名来自于英文的ceiling(天花板)和floor(地板),1962年由肯尼斯·艾佛森于《A Programming Language》引入。[2] 对于高斯符号,有如下性质。 按定义: [ x ] ≤ x < [ x ] + 1 {\displaystyle [x]\leq x<[x]+1} 当且仅当x为整数时取等号。 设x和n为正整数,则: [ n x ] ≥ n x − x − 1 x {\displaystyle \left[{\frac {n}{x}}\right]\geq {\frac {n}{x}}-{\frac {x-1}{x}}} 当n为正整数时,有: [ x n ] = x − x mod n n , {\displaystyle \left\lbrack {\frac {x}{n}}\right\rbrack ={\frac {x-x{\bmod {n}}}{n}},} 其中 x mod n {\displaystyle x{\bmod {n}}} 表示 x {\displaystyle x} 除以 n {\displaystyle n} 的余数。 对任意的整数k和任意实数x, [ k + x ] = k + [ x ] . {\displaystyle [{k+x}]=k+[x].} 一般的数值修约规则可以表述为将x映射到floor(x + 0.5); 高斯符号不是连续函数,但是上半连续的。作为一个分段的常数函数,在其导数有定义的地方,高斯符号导数为零。 设x为一个实数,n为整数,则由定义,n ≤ x当且仅当n ≤ floor(x)。 当x是正数时,有: [ 2 x ] − 2 [ x ] ⩽ 1 {\displaystyle \left\lbrack 2x\right\rbrack -2\left\lbrack x\right\rbrack \leqslant 1} 用高斯符号可以写出若干个素数公式,但没有什么实际价值,见§ 素数公式。 对于非整数的x,高斯符号有如下的傅里叶级数展开: [ x ] = x − 1 2 + 1 π ∑ k = 1 ∞ sin ( 2 π k x ) k . {\displaystyle [x]=x-{\frac {1}{2}}+{\frac {1}{\pi }}\sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}.} 根据Beatty定理,每个正无理数都可以通过高斯符号制造出一个整数集的分划。 最后,对于每个正整数k,其在 p 进制下的表示有 [ log p ( k ) ] + 1 {\displaystyle [\log _{p}(k)]+1} 个数码。 函数间之关系 由上下取整函数的定义,可见 ⌊ x ⌋ ≤ ⌈ x ⌉ , {\displaystyle \lfloor x\rfloor \leq \lceil x\rceil ,} 等号当且仅当 x {\displaystyle x} 为整数,即 ⌈ x ⌉ − ⌊ x ⌋ = { 0 , 若 x ∈ Z , 1 , 若 x ∉ Z . {\displaystyle \lceil x\rceil -\lfloor x\rfloor ={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\1,&{\text{ 若 }}\ x\not \in \mathbb {Z} .\end{cases}}} 实际上,上取整与下取整函数作用于整数 n {\displaystyle n} ,效果等同恒等函数: ⌊ n ⌋ = ⌈ n ⌉ = n . {\displaystyle \lfloor n\rfloor =\lceil n\rceil =n.} 自变量加负号,相当于将上取整与下取整互换,外面再加负号,即: ⌊ x ⌋ + ⌈ − x ⌉ = 0 , − ⌊ x ⌋ = ⌈ − x ⌉ , − ⌈ x ⌉ = ⌊ − x ⌋ . {\displaystyle {\begin{aligned}\lfloor x\rfloor +\lceil -x\rceil &=0,\\-\lfloor x\rfloor &=\lceil -x\rceil ,\\-\lceil x\rceil &=\lfloor -x\rfloor .\end{aligned}}} 且: ⌊ x ⌋ + ⌊ − x ⌋ = { 0 , 若 x ∈ Z , − 1 , 若 x ∉ Z , {\displaystyle \lfloor x\rfloor +\lfloor -x\rfloor ={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\-1,&{\text{ 若 }}\ x\not \in \mathbb {Z} ,\end{cases}}} ⌈ x ⌉ + ⌈ − x ⌉ = { 0 , 若 x ∈ Z , 1 , 若 x ∉ Z . {\displaystyle \lceil x\rceil +\lceil -x\rceil ={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\1,&{\text{ 若 }}\ x\not \in \mathbb {Z} .\end{cases}}} 至于小数部分 { x } = x − ⌊ x ⌋ {\displaystyle \{x\}=x-\lfloor x\rfloor } ,自变量取相反数会使小数部分变成关于1的“补码”: { x } + { − x } = { 0 , 若 x ∈ Z , 1 , 若 x ∉ Z . {\displaystyle \{x\}+\{-x\}={\begin{cases}0,&{\text{ 若 }}\ x\in \mathbb {Z} ,\\1,&{\text{ 若 }}\ x\not \in \mathbb {Z} .\end{cases}}} 上取整、下取整、小数部分皆为幂等函数,即函数迭代两次的结果等于自身: ⌊ ⌊ x ⌋ ⌋ = ⌊ x ⌋ , ⌈ ⌈ x ⌉ ⌉ = ⌈ x ⌉ , { { x } } = { x } . {\displaystyle {\begin{aligned}{\Big \lfloor }\lfloor x\rfloor {\Big \rfloor }&=\lfloor x\rfloor ,\\{\Big \lceil }\lceil x\rceil {\Big \rceil }&=\lceil x\rceil ,\\{\Big \{}\{x\}{\Big \}}&=\{x\}.\end{aligned}}} 而多个上取整与下取整依次迭代的效果,相当于最内层一个: ⌊ ⌈ x ⌉ ⌋ = ⌈ x ⌉ , ⌈ ⌊ x ⌋ ⌉ = ⌊ x ⌋ , {\displaystyle {\begin{aligned}{\Big \lfloor }\lceil x\rceil {\Big \rfloor }&=\lceil x\rceil ,\\{\Big \lceil }\lfloor x\rfloor {\Big \rceil }&=\lfloor x\rfloor ,\end{aligned}}} 因为外层取整函数实际只作用在整数上,不带来变化。 商 若 m {\displaystyle m} 和 n {\displaystyle n} 为正整数,且 n ≠ 0 {\displaystyle n\neq 0} ,则 0 ≤ { m n } ≤ 1 − 1 | n | . {\displaystyle 0\leq \left\{{\frac {m}{n}}\right\}\leq 1-{\frac {1}{|n|}}.} 若 n {\displaystyle n} 为正整数,则[3] ⌊ x + m n ⌋ = ⌊ ⌊ x ⌋ + m n ⌋ , {\displaystyle \left\lfloor {\frac {x+m}{n}}\right\rfloor =\left\lfloor {\frac {\lfloor x\rfloor +m}{n}}\right\rfloor ,} ⌈ x + m n ⌉ = ⌈ ⌈ x ⌉ + m n ⌉ . {\displaystyle \left\lceil {\frac {x+m}{n}}\right\rceil =\left\lceil {\frac {\lceil x\rceil +m}{n}}\right\rceil .} 若 m {\displaystyle m} 为正数,则[4] n = ⌈ n m ⌉ + ⌈ n − 1 m ⌉ + ⋯ + ⌈ n − m + 1 m ⌉ , {\displaystyle n=\left\lceil {\frac {n}{m}}\right\rceil +\left\lceil {\frac {n-1}{m}}\right\rceil +\dots +\left\lceil {\frac {n-m+1}{m}}\right\rceil ,} n = ⌊ n m ⌋ + ⌊ n + 1 m ⌋ + ⋯ + ⌊ n + m − 1 m ⌋ . {\displaystyle n=\left\lfloor {\frac {n}{m}}\right\rfloor +\left\lfloor {\frac {n+1}{m}}\right\rfloor +\dots +\left\lfloor {\frac {n+m-1}{m}}\right\rfloor .} 代 m = 2 {\displaystyle m=2} ,上式推出: n = ⌊ n 2 ⌋ + ⌈ n 2 ⌉ . {\displaystyle n=\left\lfloor {\frac {n}{2}}\right\rfloor +\left\lceil {\frac {n}{2}}\right\rceil .} 更一般地,对正整数 m {\displaystyle m} ,有埃尔米特恒等式(英语:Hermite's identity):[5] ⌈ m x ⌉ = ⌈ x ⌉ + ⌈ x − 1 m ⌉ + ⋯ + ⌈ x − m − 1 m ⌉ , {\displaystyle \lceil mx\rceil =\left\lceil x\right\rceil +\left\lceil x-{\frac {1}{m}}\right\rceil +\dots +\left\lceil x-{\frac {m-1}{m}}\right\rceil ,} ⌊ m x ⌋ = ⌊ x ⌋ + ⌊ x + 1 m ⌋ + ⋯ + ⌊ x + m − 1 m ⌋ . {\displaystyle \lfloor mx\rfloor =\left\lfloor x\right\rfloor +\left\lfloor x+{\frac {1}{m}}\right\rfloor +\dots +\left\lfloor x+{\frac {m-1}{m}}\right\rfloor .} 对于正整数 m {\displaystyle m} ,以下两式可将上下取整函数互相转化:[6] ⌈ n m ⌉ = ⌊ n + m − 1 m ⌋ = ⌊ n − 1 m ⌋ + 1 , {\displaystyle \left\lceil {\frac {n}{m}}\right\rceil =\left\lfloor {\frac {n+m-1}{m}}\right\rfloor =\left\lfloor {\frac {n-1}{m}}\right\rfloor +1,} ⌊ n m ⌋ = ⌈ n − m + 1 m ⌉ = ⌈ n + 1 m ⌉ − 1. {\displaystyle \left\lfloor {\frac {n}{m}}\right\rfloor =\left\lceil {\frac {n-m+1}{m}}\right\rceil =\left\lceil {\frac {n+1}{m}}\right\rceil -1.} 对任意正整数 m {\displaystyle m} 和 n {\displaystyle n} ,有:[7] ∑ k = 1 n − 1 ⌊ k m n ⌋ = ( m − 1 ) ( n − 1 ) + gcd ( m , n ) − 1 2 , {\displaystyle \sum _{k=1}^{n-1}\left\lfloor {\frac {km}{n}}\right\rfloor ={\frac {(m-1)(n-1)+\gcd(m,n)-1}{2}},} 作为特例,当 m {\displaystyle m} 和 n {\displaystyle n} 互素时,上式简化为 ∑ k = 1 n − 1 ⌊ k m n ⌋ = 1 2 ( m − 1 ) ( n − 1 ) . {\displaystyle \sum _{k=1}^{n-1}\left\lfloor {\frac {km}{n}}\right\rfloor ={\frac {1}{2}}(m-1)(n-1).} 此等式可以几何方式证明。又由于右式关于 m {\displaystyle m} 、 n {\displaystyle n} 对称,可得 ⌊ m n ⌋ + ⌊ 2 m n ⌋ + ⋯ + ⌊ ( n − 1 ) m n ⌋ = ⌊ n m ⌋ + ⌊ 2 n m ⌋ + ⋯ + ⌊ ( m − 1 ) n m ⌋ . {\displaystyle \left\lfloor {\frac {m}{n}}\right\rfloor +\left\lfloor {\frac {2m}{n}}\right\rfloor +\dots +\left\lfloor {\frac {(n-1)m}{n}}\right\rfloor =\left\lfloor {\frac {n}{m}}\right\rfloor +\left\lfloor {\frac {2n}{m}}\right\rfloor +\dots +\left\lfloor {\frac {(m-1)n}{m}}\right\rfloor .} 更一般地,对正整数 m , n {\displaystyle m,n} ,有 ⌊ x n ⌋ + ⌊ m + x n ⌋ + ⌊ 2 m + x n ⌋ + ⋯ + ⌊ ( n − 1 ) m + x n ⌋ = ⌊ x m ⌋ + ⌊ n + x m ⌋ + ⌊ 2 n + x m ⌋ + ⋯ + ⌊ ( m − 1 ) n + x m ⌋ . {\displaystyle {\begin{aligned}&\left\lfloor {\frac {x}{n}}\right\rfloor +\left\lfloor {\frac {m+x}{n}}\right\rfloor +\left\lfloor {\frac {2m+x}{n}}\right\rfloor +\dots +\left\lfloor {\frac {(n-1)m+x}{n}}\right\rfloor \\=&\left\lfloor {\frac {x}{m}}\right\rfloor +\left\lfloor {\frac {n+x}{m}}\right\rfloor +\left\lfloor {\frac {2n+x}{m}}\right\rfloor +\cdots +\left\lfloor {\frac {(m-1)n+x}{m}}\right\rfloor .\end{aligned}}} 上式算是一种“互反律”(reciprocity law)[7],与§ 二次互反律有关。 二次互反律 高斯给出二次互反律的第三个证明,经艾森斯坦修改后,有以下两个主要步骤。[8][9] 设 p {\displaystyle p} 、 q {\displaystyle q} 为互异奇素数,又设 m = p − 1 2 , {\displaystyle m={\frac {p-1}{2}},} n = q − 1 2 . {\displaystyle n={\frac {q-1}{2}}.} 首先,利用高斯引理,证明勒让德符号可表示为和式: ( q p ) = ( − 1 ) ⌊ q p ⌋ + ⌊ 2 q p ⌋ + ⋯ + ⌊ m q p ⌋ , {\displaystyle \left({\frac {q}{p}}\right)=(-1)^{\left\lfloor {\frac {q}{p}}\right\rfloor +\left\lfloor {\frac {2q}{p}}\right\rfloor +\dots +\left\lfloor {\frac {mq}{p}}\right\rfloor },} 同样 ( p q ) = ( − 1 ) ⌊ p q ⌋ + ⌊ 2 p q ⌋ + ⋯ + ⌊ n p q ⌋ . {\displaystyle \left({\frac {p}{q}}\right)=(-1)^{\left\lfloor {\frac {p}{q}}\right\rfloor +\left\lfloor {\frac {2p}{q}}\right\rfloor +\dots +\left\lfloor {\frac {np}{q}}\right\rfloor }.} 其后,采用几何论证,证明 ⌊ q p ⌋ + ⌊ 2 q p ⌋ + ⋯ + ⌊ m q p ⌋ + ⌊ p q ⌋ + ⌊ 2 p q ⌋ + ⋯ + ⌊ n p q ⌋ = m n . {\displaystyle \left\lfloor {\frac {q}{p}}\right\rfloor +\left\lfloor {\frac {2q}{p}}\right\rfloor +\dots +\left\lfloor {\frac {mq}{p}}\right\rfloor +\left\lfloor {\frac {p}{q}}\right\rfloor +\left\lfloor {\frac {2p}{q}}\right\rfloor +\dots +\left\lfloor {\frac {np}{q}}\right\rfloor =mn.} 总结上述两步,得 ( p q ) ( q p ) = ( − 1 ) m n = ( − 1 ) p − 1 2 q − 1 2 . {\displaystyle \left({\frac {p}{q}}\right)\left({\frac {q}{p}}\right)=(-1)^{mn}=(-1)^{{\frac {p-1}{2}}{\frac {q-1}{2}}}.} 此即二次互反律。一些小整数模奇素数 p {\displaystyle p} 的二次特征标,可以高斯符号表示,如:[10] ( 2 p ) = ( − 1 ) ⌊ p + 1 4 ⌋ , {\displaystyle \left({\frac {2}{p}}\right)=(-1)^{\left\lfloor {\frac {p+1}{4}}\right\rfloor },} ( 3 p ) = ( − 1 ) ⌊ p + 1 6 ⌋ . {\displaystyle \left({\frac {3}{p}}\right)=(-1)^{\left\lfloor {\frac {p+1}{6}}\right\rfloor }.} 素数公式 下取整函数出现于若干刻画素数的公式之中。举例,因为 ⌊ n m ⌋ − ⌊ n − 1 m ⌋ {\displaystyle \left\lfloor {\frac {n}{m}}\right\rfloor -\left\lfloor {\frac {n-1}{m}}\right\rfloor } 在 m {\displaystyle m} 整除 n {\displaystyle n} 时等于 1 {\displaystyle 1} ,否则为 0 {\displaystyle 0} ,所以正整数 n {\displaystyle n} 为素数当且仅当[11] ∑ m = 1 ∞ ( ⌊ n m ⌋ − ⌊ n − 1 m ⌋ ) = 2. {\displaystyle \sum _{m=1}^{\infty }\left(\left\lfloor {\frac {n}{m}}\right\rfloor -\left\lfloor {\frac {n-1}{m}}\right\rfloor \right)=2.} 除表示素数的条件外,还可以写出公式使其取值为素数。例如,记第 n {\displaystyle n} 个素数为 p n {\displaystyle p_{n}} ,任选一个整数 r > 1 {\displaystyle r>1} ,然后定义实数 α {\displaystyle \alpha } 为 α = ∑ m = 1 ∞ p m r − m 2 . {\displaystyle \alpha =\sum _{m=1}^{\infty }p_{m}r^{-m^{2}}.} 则只用取整、幂、四则运算可以写出素数公式:[12] p n = ⌊ r n 2 α ⌋ − r 2 n − 1 ⌊ r ( n − 1 ) 2 α ⌋ . {\displaystyle p_{n}=\left\lfloor r^{n^{2}}\alpha \right\rfloor -r^{2n-1}\left\lfloor r^{(n-1)^{2}}\alpha \right\rfloor .} 类似还有米尔斯常数 θ = 1.3064 … {\displaystyle \theta =1.3064\ldots } ,使 ⌊ θ 3 ⌋ , ⌊ θ 9 ⌋ , ⌊ θ 27 ⌋ , … {\displaystyle \left\lfloor \theta ^{3}\right\rfloor ,\left\lfloor \theta ^{9}\right\rfloor ,\left\lfloor \theta ^{27}\right\rfloor ,\dots } 皆为素数。[13] 若不迭代三次方函数,改为迭代以 2 {\displaystyle 2} 为㡳的指数函数,亦有 ω = 1.9287800 … {\displaystyle \omega =1.9287800\ldots } 使 ⌊ 2 ω ⌋ , ⌊ 2 2 ω ⌋ , ⌊ 2 2 2 ω ⌋ , … {\displaystyle \left\lfloor 2^{\omega }\right\rfloor ,\left\lfloor 2^{2^{\omega }}\right\rfloor ,\left\lfloor 2^{2^{2^{\omega }}}\right\rfloor ,\dots } 皆为素数。[13] 以素数计算函数 π ( x ) {\displaystyle \pi (x)} 表示小于或等于 x {\displaystyle x} 的素数个数。由威尔逊定理,可知[14] π ( n ) = ∑ j = 2 n ⌊ ( j − 1 ) ! + 1 j − ⌊ ( j − 1 ) ! j ⌋ ⌋ . {\displaystyle \pi (n)=\sum _{j=2}^{n}\left\lfloor {\frac {(j-1)!+1}{j}}-\left\lfloor {\frac {(j-1)!}{j}}\right\rfloor \right\rfloor .} 又或者,当 n ≥ 2 {\displaystyle n\geq 2} 时:[15] π ( n ) = ∑ j = 2 n ⌊ 1 ∑ k = 2 j ⌊ ⌊ j k ⌋ k j ⌋ ⌋ . {\displaystyle \pi (n)=\sum _{j=2}^{n}\left\lfloor {\frac {1}{\sum _{k=2}^{j}\left\lfloor \left\lfloor {\frac {j}{k}}\right\rfloor {\frac {k}{j}}\right\rfloor }}\right\rfloor .} 本小节的公式未有任何实际用途。[16][17] 对于所有实数x,有: [ x 2 ] = 1 4 ( ( − 1 ) [ x ] − 1 + 2 [ x ] ) {\displaystyle \left\lbrack {\frac {x}{2}}\right\rbrack ={\frac {1}{4}}((-1)^{[x]}-1+2[x])} [ x 3 ] = 1 3 ( 2 3 sin ( 2 π 3 [ x ] + π 3 ) − 1 + [ x ] ) {\displaystyle \left\lbrack {\frac {x}{3}}\right\rbrack ={\frac {1}{3}}({\frac {2}{\sqrt {3}}}\sin({\frac {2\pi }{3}}[x]+{\frac {\pi }{3}})-1+[x])} 设x为一个实数,n为整数,则 ∑ k = 0 n − 1 E ( x + k n ) = E ( n x ) {\displaystyle \sum _{k=0}^{n-1}E(x+{\frac {k}{n}})=E(nx)} E ( 1 n E ( n x ) ) = E ( x ) {\displaystyle E({\frac {1}{n}}E(nx))=E(x)} 对于两个相反数的高斯符号,有: 如果x为整数,则 E ( x ) + E ( − x ) = 0 {\displaystyle E(x)+E(-x)=0} 否则 E ( x ) + E ( − x ) = − 1 {\displaystyle E(x)+E(-x)=-1} [1]Ronald Graham, Donald Knuth and Oren Patashnik(英语:Oren Patashnik). "Concrete Mathematics". Addison-Wesley, 1999. Chapter 3, "Integer Functions". [2]Iverson, Kenneth E. A Programming Language. Wiley. 1962. [3]Graham, Knuth & Patashnik 1994,第73页. [4]Graham, Knuth & Patashnik 1994,第85页. [5]Graham, Knuth & Patashnik 1994,p. 85 and Ex. 3.15. [6]Graham, Knuth & Patashnik 1994,Ex. 3.12. [7]Graham, Knuth & Patashnik 1994,第94页. [8]Lemmermeyer 2000,§ 1.4, Ex. 1.32–1.33. [9]Hardy & Wright 1980,§§ 6.11–6.13. [10]Lemmermeyer 2000,第25页. [11]Crandall & Pomerance 2001,Ex. 1.3, p. 46,求和式的上限 ∞ {\displaystyle \infty } 可以换成 n {\displaystyle n} 。尚有一个等价的表述: n > 1 {\displaystyle n>1} 为素数当且仅当 ∑ m = 1 ⌊ n ⌋ ( ⌊ n m ⌋ − ⌊ n − 1 m ⌋ ) = 1. {\displaystyle \sum _{m=1}^{\lfloor {\sqrt {n}}\rfloor }\left(\left\lfloor {\frac {n}{m}}\right\rfloor -\left\lfloor {\frac {n-1}{m}}\right\rfloor \right)=1.} [12]Hardy & Wright 1980,§ 22.3. [13]Ribenboim 1996,第186页 [14]Ribenboim 1996,第181页. [15]Crandall & Pomerance 2001,Ex. 1.4, p. 46. [16]Ribenboim 1996,第180页(译文):“虽然该些公式毫不实用⋯⋯但逻辑学家希望清晰明白不同公理体系,如何推导出算术各方面,则或许与此有关⋯⋯” [17]Hardy & Wright 1980,第344—345页(译文):“若数 α {\displaystyle \alpha } 的准确值⋯⋯可以无关素数的方式表达,则该些公式之任一(或一切类似公式)的地位将截然不同。似乎没有此种可能,但却不能完全排除。” Crandall, Richard; Pomerance, Carl. Prime Numbers: A Computational Perspective. New York: Springer. 2001 [2022-02-06]. ISBN 0-387-94777-9. (原始内容存档于2022-04-09). Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren. Concrete Mathematics. Reading Ma.: Addison-Wesley. 1994. ISBN 0-201-55802-5. Hardy, G. H.; Wright, E. M. An Introduction to the Theory of Numbers (Fifth edition). Oxford: Oxford University Press. 1980. ISBN 978-0-19-853171-5. Lemmermeyer, Franz. Reciprocity Laws: from Euler to Eisenstein. Berlin: Springer. 2000. ISBN 3-540-66957-4. Ribenboim, Paulo. The New Book of Prime Number Records. New York: Springer. 1996. ISBN 0-387-94457-5. 截尾函数 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.