维生素K(英语:Vitamin K)指的是食物中结构相似于脂溶性维生素的一种物质,那是萘醌基的衍生物2-甲萘醌,具疏水性,它是一些特定蛋白质翻译后所必需的,尤其是血液凝固中必备的蛋白质,并作为膳食补充剂销售[1]。人体某些蛋白质需要维生素K作为合成后修饰以作血液凝血(德语:Koagulation),或用于控制骨骼中的钙和其他组织[2]。完全合成涉及通过使用维生素K作为辅因子的酶γ-谷氨酰羧化酶对这些所谓Gla蛋白进行的最终修饰。未羧化蛋白质的存在显示著维生素K的缺乏。羧基化使它们能够结合钙离子(螯合物),否则它们将无法结合[3]。若没有维生素K,血液的凝结会严重受损,并且会发生无法控制的出血。研究表明,维生素K的缺乏也可能削弱骨骼,潜在地导致骨质疏松症,并可能促进动脉和其他软组织的钙化[2][3][4]。
化学上,维生素K家族包括了2-甲基-1,4-萘醌(3-)衍生物。维生素K包括两种天然维生素:维生素K1、维生素K2[3]。维生素K2依次由许多相关的化学亚型组成,它们的碳侧链的长度由类异戊二烯原子组构成。研究最多的两个是甲萘醌4(MK-4)和甲萘醌7(MK-7)。
维生素K1由植物制成,在绿叶蔬菜中含量最高,因为它直接参与了光合作用。它在动物中作为维生素具有活性,并具有维生素K的经典功能,包括其在凝血蛋白生产中的活性。动物还可以将其以MK-4(称为甲萘醌)的形式将其转化为维生素K2。肠道菌群中的细菌也可以把维生素K1转换为MK-4。MK-4以外的所有形式的维生素K2只能由细菌产生,而细菌在无氧呼吸时会利用它们,因此缺乏维生素K是极为罕见的状况,除非肠道有严重损伤。维生素K3(甲萘醌)及维生素K4是维生素K的人工合成形式,用于治疗维生素K缺乏症,但是由于它会干扰谷胱甘肽的功能,因此不再使用这种方法[2]。
定义
维生素K是指这种维生素的几种形式,即从食物中吸收的必需营养素和合成产物,以及作为多种维生素的一部分或作为单一维生素膳食补充剂作销售,和用于特定用途的处方药物[1]。所有维生素K的结构都相似:它们共享一个“醌”环,但碳尾部分的长度和饱和度,以及“侧链”中重复的异戊二烯单元数量也有所不同(如图)。侧链的长度影响脂质溶解度,因此输送到不同的靶组织。维生素K1(叶绿醌)主要在绿叶蔬菜中发现,例如菠菜、莙荙菜、莴苣,和甘蓝蔬菜如羽衣甘蓝、花椰菜、西兰花和抱子甘蓝[1][5]。食物也可以是维生素K2(甲萘醌)的来源,根据类异戊二烯链的长度,其具有MK-4至MK-10的变体[3]。由细菌发酵大豆而制成的纳豆是MK-7的丰富食物来源[6]。甲萘醌长链主要是来自细菌,其中包括人大肠中的细菌,并通过肠壁吸收。然而,某些动物组织会将维生素K1转换为MK-4,因此动物来源食物也可能是维生素K2的来源[3]。在美国,维生素K1以及维生素K2的MK-4和MK-7变体作为膳食补充剂出售,每剂量从100-500微克。药物用途是用于治疗华法林过量或中毒[7],并作为对新生儿的预防性治疗,以防止婴儿出现维生素K缺乏症引起的出血后果[8]。
维生素K1
- 分子式:C31H46O2
- 分子量:450 g/mole
- 密度:0.97 g/cm3
- 熔点:-20 °C
- 沸点:140-145 °C
- 外观:黄色油状
- 溶解性:不溶于水,难溶于甲醇,可溶于其他各种有机溶剂。
维生素K2(MK-7)
- 熔点:54 °C
- 外观:黄色结晶
- 溶解性:不溶于水,难溶于甲醇,可溶于其他各种有机溶剂。
- 所有的K类维生素都抗热和水,但易遭酸、碱、氧化剂和光(特别是紫外线)的破坏
维生素K缺乏症
均衡饮食通常不会出现维生素K缺乏症,健康的成年人很少会有原发性的缺乏症。新生婴儿出现缺乏的风险增加。维生素K缺乏症患病率上升的人口中包括那些患有肝病的人,例如酗酒、囊肿性纤维化、炎症性肠病、或最近进行过腹部手术的人。继发性维生素K缺乏症会发生于神经性暴食症患者、饮食严格的人,以及服用抗凝剂的人身上。其他与维生素K缺乏症有关的药物包括水杨酸、巴比妥类药物及头孢孟多酯,尽管其作用机理尚未清楚。维生素K缺乏症已被定义为对维生素K具反应的低凝血酶原血症,会增加凝血酶原时间[4],因此可能导致出现一种出血性疾病—凝血病[2]。维生素K1缺乏症的症状包括贫血、瘀斑、流鼻血及男女牙龈出血和女性月经大量出血。
冠状动脉疾病跟维生素K2水平较低有关[9]。维生素K2(从MK-4到MK-10的甲基萘醌)的摄入量与严重主动脉钙化和全因死亡率成反比[10]。
食物来源
叶绿醌广泛分布于动物性和植物性食物中,柑橘类水果每100克含量少于0.1μg,牛奶含量为每100毫升1μg,菠菜、羽衣甘蓝每100克含量为400μg。而大多数日常食物中都没有甲萘醌,它在肝中每100克含量为13μg,某些干酪每100克含量为2.8μg。维生素K于纳豆中含量较高[11]。
食物(经烹煮) | 分量 | 维生素K1含量 (μg)[1] | 食物(新鲜) | 分量 | 维生素K1含量 (μg)[1] | |
---|---|---|---|---|---|---|
羽衣甘蓝 | 1⁄2 杯 | 265 | 香芹 | 1⁄4 杯 | 246 | |
菠菜 | 1⁄2 杯 | 444 | 菠菜 | 1 杯 | 145 | |
宽叶羽衣甘蓝 | 1⁄2 杯 | 418 | 宽叶羽衣甘蓝 | 1 杯 | 184 | |
莙荙菜 | 1⁄2 杯 | 287 | 莙荙菜 | 1 杯 | 299 | |
绿色的芥菜类蔬菜 | 1⁄2 杯 | 210 | 绿色的芥菜类蔬菜 | 1 杯 | 279 | |
绿色的芜菁 | 1⁄2 杯 | 265 | 绿色的芜菁 | 1 杯 | 138 | |
西兰花 | 1 杯 | 220 | 西兰花 | 1 杯 | 89 | |
抱子甘蓝 | 1 杯 | 219 | 苣荬菜 | 1 杯 | 116 | |
卷心菜 | 1⁄2 杯 | 82 | 绿色卷心菜 | 1 杯 | 71 | |
美国国立卫生研究院药物营养相互作用小组临床中心提供的“服用华法林(Coumadin)和维生素K时需要知道的重要信息”列表。[12] |
对于获处方华法林(一种维生素K对抗药)的人士,尽管其中一些植物来源的维生素K1含量很高,医学建议不要完全避免食用这些食物(也许羽衣甘蓝和菠菜除外),而是要保持维生素K的摄入量尽可能一致,从而使维生素摄取与华法林的结合使抗凝活性保持在治疗范围之内[12]。对于植物中的维生素K,跟膳食补充剂中的维生素相比,在叶绿体中的类囊体膜紧密结合,无论是新鲜的还是经烹煮的,使其生物利用度会降低[3]。
美国医学研究院(IOM)于1998年更新了维生素K的估计平均需求量(EARs)和建议摄取量(RDA)。IOM不能区分维生素K1与维生素K2 — 故两者都列为维生素K。当时,尚未有足够的数据来建立维生素K的估计平均需求量及建议摄取量。在诸如这些的情况下,委员会设定了足够摄入量(AI),但知道日后会有更准确的数据以取代它。
年龄 | 每天所需分量(μg) |
---|---|
12个月以下的婴儿 | 2.0–2.5 |
1至18岁的儿童 | 30 - 75(随着年龄的增长而增加) |
怀孕期女性 | 90 |
哺乳期女性 | 90 |
19岁及以上的成年女性 | 90 |
19岁及以上的成年男性 | 120 |
对于安全性,IOM会在证据充分的情况下替维生素和矿物质设定可忍受的最高摄入量(UL)。维生素K并没有可忍受的最高摄入量,因为有关高剂量的不良反应的人类数据并不足以制订。总括来说,EAR、RDA、AI和UL称为参考膳食摄取量[4]。
欧洲食品安全管理局(EFSA)把这些数据的集合称为膳食参考值,以人口参考摄入量(PRI)取代RDA,并以平均需求量取代EAR。在美国,AI和UL的定义都是相同的。对于1-17岁的儿童,AI值会随年龄增长每天从12μg增加至65μg[13]。日本把人们的AI值设定为男性每天75μg,女性每天65μg[14]。EFSA和日本的AI都低于美国的RDA。EFSA和日本也对安全性进行了审查,并与美国一样得出结论,认为没有足够的证据确定维生素K的UL[14][15]。
化学结构
维生素K是一族类似结构的化合物,其共同有甲基化萘醌环,但是在3号位置上的烃侧链则不同。叶绿醌(Phylloquinone。也称为维生素K1)侧链上具四个异戊二烯(isoprenoid)残基,其中一个是不饱知的。甲萘醌(Menaquinone,维生素K2)侧链上不饱知的异戊二烯链的数目不等,通常简称为MK-n,n代表异戊二烯链的数目。MK-4,5,7与维生素K1活性相等。MK-1只有维生素K1的1%活性,MK-10也只有30~49%的活性。甲萘醌(Menadione,维生素K3)是人工合成产物,但具有毒性。
生理学
维生素K参与某特定的蛋白质中的谷氨酸的γ位置的羧化作用,这些γ-羧基谷氨酸(缩写为Gla)参与钙离子结合,而具 Gla残基对活性是必需的蛋白质统称Gla-蛋白质。目前,有14个人类的Gla-蛋白质被发现,它们参与以下生理作用:
- 调节凝血蛋白质合成凝血(凝血酶原(FactorⅡ),凝血因子Ⅶ、Ⅸ、Ⅹ,C-蛋白质,S-蛋白质和Z-蛋白质)
- 钙化组织中维生素K依赖蛋白质 成骨细胞合成3种维生素K依赖Gla蛋白质。骨质新陈代谢
- 血管
- 在大脑硫脂代谢中可能有作用
疾病中角色
维生素K发生缺乏的原因是由于在肠中吸收被干扰(例如胆管阻塞)或由于治疗或意外服用维生素K拮抗剂,而因营养缺乏引致维生素K缺乏症是很罕见的。由于维生素K的缺乏而使Gla 残基不能或只部分生成,因此Gla蛋白质是不激活。以上提及的三个生理功能缺乏控制也许会导致:不可控制大出血风险、软骨钙化和严重变形的骨质生长、不可溶的钙盐沉积在动脉壁上。
新生儿维生素K缺乏
新生儿有许多原因会造成维生素K缺乏。他们出生的时候可能会缺乏维生素K,原因是这种维生素不易从母体经由胎盘进入胎儿体内,经由母乳哺育提供的维生素K不足,而且胎儿肠道的产维生素K的细菌仍未进入,还有一个因素是肝脏未臻成熟,因此有些新生儿此维生素会很少。
发现
在1920年代晚期,丹麦科学家亨利克·达姆研究以胆固醇量低饲料养鸡观察胆固醇的角色。几个星期后,动物被开始有出血现象和开始流血。这些毛病不能以增加胆固醇量低饲料来恢复健康。似乎暗示某化合物与胆固醇一起从食物被提取出来,因外这种化合物称凝血维生素。这个新的维生素以K标示是因为最初的发现在德国学报报告,德文便是Koagulations维生素。圣路易斯大学的爱德华·阿德尔伯特·多伊西再加以研究,因比发现其结构及化学特性。达姆和多伊西在维生素K 的研究贡献而同时分享1943年诺贝尔生理学或医学奖。路易斯·费瑟是第一个成功以化学合成该维生素的有机化学家。
几十年来,患维生素缺乏症的鸡模型是定量测量各种食物中的维生素K的唯一方法 :小鸡先被引起维生素K缺乏症,然后被喂食已知含量的维生素K的食物。血液凝集被饮食恢复的程度被采用为其维生素K 含量指标。
1938年,哈利·普拉特·史密斯(Harry Pratt Smith)、埃默里·华纳(Emory Warner)、肯尼斯·布林霍斯和沃尔特·西格斯(Walter Seegers)等人在爱荷华大学病理系医生报导第一个成功以维生素K治疗因凝血酶缺乏的黄疸病病人出血的致命危险。但当时维生素K的精确作用尚未被发现。直到1974年,Stenflo等从服用大剂量的维生素K拮抗剂华法林母牛中分离出维生素K-依赖的凝血酶原(Factor Ⅱ)。正常的凝血酶原含有10个不寻常的氨基酸残基,且后来被确认为γ-羧化谷氨酸(Gla)。但从华法林处理过的母牛分离之凝血酶原却有正常谷氨酸,因此便称为去羧基凝血酶原descarboxyprothrombin。额外羧基在Gla上明显的证明维生素K作为将谷氨酸Glu转换成Gla的羧化反应的角色。
Gla-蛋白质
现在,人类的Gla蛋白质特性被了解已有一定程度:凝血因子Ⅱ(凝血酶原)、Ⅶ、Ⅸ和Ⅹ,C和S-抗凝血蛋白质和以凝血酶为标的Z-蛋白质、骨钙蛋白(骨Gla蛋白质)、钙化抑制底物Gla蛋白质(matrix gla protein,MGP),细胞生长调控的特殊抑长基因6 蛋白质(Gas6)和当前功能仍未知的穿膜Gla蛋白质。Gas6可能透过激活Axl 接受器酪氨酸激酶和刺激细胞增生或防止细胞凋亡。在以上为人所知的例子中,Gla残基的是功能必需的。
现已知Gla蛋白质存在于各种脊椎动物:哺乳动物、鸟、爬行动物和鱼。一些澳大利亚蛇毒液便由激活人血凝结的系统。有些情况,激活作用由Gla蛋白质与磷酸质膜结合因此转化前凝血因子(procoagulant)成激活态。
由无脊椎动物地纹芋螺(Conus geographus)产生的Gla蛋白是由芋螺毒素(conantokins)形成。这些蜗牛产生的神经毒素具有富含Gla的肽,而且足以杀害成年人。
参考文献
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.