Remove ads
来自维基百科,自由的百科全书
完备空间,或称完备度量空间(英语:Complete metric space)是具有下述性质的一种度量空间:空间中的任何柯西序列都收敛在该空间之内。 [1][2]
此条目需要补充更多来源。 (2017年1月8日) |
对任一度量空间M,我们可以构造相应的完备度量空间M' (或者表示为),使得原度量空间成为新的完备度量空间的稠密子空间。M' 具备以下普适性质:若N为任一完备度量空间,f为任一从M到N的一致连续函数,则存在唯一的从M' 到N的一致连续函数f' 使得该函数为f的扩展。新构造的完备度量空间M' 在等距同构意义下由该性质所唯一决定,称为M的完备化空间。
以上定义是基于M是M'的稠密子空间的概念。我们还可以将完备化空间定义为包含M的最小完备度量空间。可以证明,这样定义的完备化空间存在,唯一(在等距同构意义下),且与上述定义等价。
类似于从有理数域出发定义无理数的方法,我们可以通过柯西序列给原空间添加元素使其完备。
对M中的任意两个柯西序列x=(xn)和y=(yn),我们可以定义它们间的距离: d(x,y) = limn d(xn,yn)(实数域完备所以该极限存在)。按此方式定义的度量还只是伪度量,这是因为不同的柯西序列均可收敛到0。但我们可以象很多情况中所做的一样(比如从Lp到),将新的度量空间定义为所有柯西序列的集合上的等价类的集合,其中等价类是基于距离为0的关系(易于验证该关系是等价关系)。这样,令ξx = {y是M上的柯西序列:},M' ={ξx:x ∈ M},原空间M就以xξx的映射方式嵌入到新的完备度量空间M' 中。易于验证,M等距同构于M' 的稠密子空间。
康托法构造实数是该完备化方法的一个特例:实数域是有理数域作为以通常的差的绝对值为距离的度量空间的完备化空间。
康托尔的实数建构是上述构造的特例;此时实数集可表为有理数集对绝对值的完备化。倘若在有理数集上另取其它的绝对值,得到的完备空间则为p进数。
若将上述流程施于赋范向量空间,可得到一个巴拿赫空间,原空间是其中的稠密子空间。若施于一个内积空间,得到的则是希尔伯特空间,原空间依然是其稠密子空间。
此条目应避免有陈列杂项、琐碎资料的部分。 (2022年3月27日) |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.