拓扑空间(英语:Topological space)是一种赋予“一点附近”这个概念的抽象数学结构;拓扑空间也是一个集合,其元素称为点,由此可以定义出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。
拓扑结构最实用的动机,在于怎么去定义“一点的附近”,用以定义函数极限。
对于度量空间 内的任一点 ,可定义中心为 ,半径为 的开球
然后把开球视为点 附近的“开放边界区域”。但考虑到“区域”应该是有任意形状的,那一般的“开放边界区域”,应该是任取里面的点 ,都会有一个够小的开球 完全落在这个区域里,也就是说,可以定义 的开子集 为满足如下条件的子集合
这样定义的开集有一些有趣的性质:
(1) 任二开集的交集也是开集
任取两个 的开子集 ,若 ,根据定义存在 使得
这样若取 ,则会有:
也就是说, 也是个开集。
(2) 任意个开集的并集也会是开集
若 是一群开集所构成的集合,也就是说
如果取
换句话说:
这样的话,显然有
所以 也会是一个开集。
以上的性质促使人们在不依托度量情况下,去定义一个描述“一点的附近”的结构,换句话说,去抽象的定义一群开集是这么样的特殊集合,任二开集的交集是开的且任意开集的并集也是开的。
拓扑结构一词涵盖了开集系,闭集系,邻域系,开核,闭包,导集,滤子等若干概念。可以从这些概念出发,给出若干种等价结构,但大部分书籍都以开集系为准。
根据定义动机一节可以作如下的定义:
的子集族 若满足以下开集公理
更多信息 , ...
正式定义
|
直观解释
|
|
本身和空集合也是开的
|
|
有限个开集的交集也是开的
|
|
任意个开集的并集也是开的
|
关闭
则称 为 的开集系(其中的元素称为开集)或拓扑, 则被称为一拓扑空间, 内的元素 则称为拓扑空间 的点。
开集系的代号 是字母“O”的德文尖角体,取名自德语形容词“offen”(开的)。
从开集系出发定义其它概念:( 为 的子集)
- 闭集:若 是开集,则称 是闭集。
- 邻域:若存在开集 使得 ,则称 是点 的邻域。
- 开核: 的开核(或内部) 定义为 内所有开集之并,也就是
的子集族 若满足如下闭集公理:
更多信息 , ...
正式定义
|
直观解释
|
|
本身和空集合也是闭的
|
|
有限个闭集的并集是闭的
|
|
任意个闭集的交集是闭的
|
关闭
则称 为 的闭集系(其中的元素称为闭集)。
开集系的代号 是字母“ F” 的德文尖角体,取名自法语动词“fermer”(关闭)的过去分词“fermé”(封闭的)。
根据德摩根定理和量词符号的意义,以下的子集族
为开集系,类似地,对于开集系 ,以下的子集族
为闭集系,所以闭集系跟拓扑是等价的结构。
从闭集系出发定义其它概念:( 为 的子集)
- 开集: 是闭集,则称 是开集。
- 闭包: 的闭包 定义为包含A的所有闭集之交,也就是
函数 ( 指 的幂集的幂集,也就是由所有子集族所构成的集合)若对任意 满足如下邻域公理:
更多信息 , ...
正式定义
|
直观解释
|
|
属于 的任意元素( 里的元素都是 的邻域)
|
|
的任二邻域的交集也是 的邻域
|
|
包含任何 的邻域的任意子集也是 的邻域
|
|
的每个邻域内有个 的邻域,使的大邻域都是小邻域里面点的领域
|
关闭
这样任意 被称为 的邻域系, 里的元素 则称为 的邻域。
换句话说,函数 将 的每个点 映射至 ,而 则是所有 的邻域所构成的集族。
邻域系的代号 是字母“ U” 的德文尖角体,取名自德语动词“ umgeben”(环绕)的名词化“Umgebung”(周围、环境)。
若取以下的子集族
因为 包含任意邻域, 本身显然为任意 的领域,故 ;另外空集合 没有任何属于它的点,所以根据实质条件的意义,。
若取 ,根据邻域公理的第二项有 ;若取 ,且 ,那换句话说
这样的话有
那这样根据邻域公理第三项,,所以 的确是个开集合系。
类似地对于开集系 ,若对任意 取
那 也会符合上面四款邻域系公理(注意到第四项取 ),所以对所有 定义了邻域系等同于定义了一个拓扑。
从邻域系出发定义其它概念:( 为 的子集)
- 开集:对任意 ,有 ,则称 是开集。(开集本身是它所有点的邻域)
- 开核:(开核里的每一点,都有一个包含于 的领域。)
- 闭包:。(闭包里每一点的领域,都跟 有交集。)
同一个全集可以拥有不同的拓扑,有些是有用的,有些是平庸的,这些拓扑之间可以形成一种偏序关系。当拓扑的每一个开集都是拓扑的开集时,称拓扑比拓扑更细,或称拓扑比拓扑更粗。
仅依赖于特定开集的存在而成立的结论,在更细的拓扑上依然成立;类似的,仅依赖于特定集合不是开集而成立的结论,在更粗的拓扑上也依然成立。
最粗的拓扑是由空集和全集两个元素构成的拓扑,最细的拓扑是离散拓扑,这两个拓扑都是平庸的。
在有些文献中,我们也用大小或者强弱来表示这里粗细的概念。
类似定义拓扑空间,连续映射也有基于开集,闭集,开核,闭包和邻域等概念的等价定义。
拓扑空间作为对象,连续映射作为态射,构成了拓扑空间范畴,它是数学中的一个基础性的范畴。试图通过不变量来对这个范畴进行分类的想法,激发和产生了整个领域的研究工作,包括同伦论、同调论和K-理论。
给定拓扑空间,A是X的子集,有以下概念(继续使用上面的符号):
- 内部,内点
- A的开核o(A)又称为A的内部,其元素称为A的内点。
- 外部,外点
- X - c(A)称为A的外部,其元素称为A的外点。
- 边界,边界点
- c(A)∩c(X-A)称为A的边界,其元素称为A的边界点。
- 触点
- A的闭包c(A)中的点称为A的触点。
- 稠密性,稠密集
- 称A在X中是稠密的(或称稠密集),当且仅当c(A) = X。
- 边缘集
- 称A是X的边缘集,当且仅当X-A在X中是稠密的。
- 疏性,疏集
- 称A在X中是疏的(或称疏集),当且仅当c(A)是X中的边缘集。
- 第一范畴集,第二范畴集
- 称A是X中的第一范畴集,当且仅当A可以表示为可数个疏集的并。称A是X中的第二范畴集,当且仅当A不是X中的第一范畴集。
- 聚点,导集
- X中的点x称为A的聚点,当且仅当x ∈ c(A - {x})(或者等价地,x的任意邻域至少包含x以外的A的一个点)。A的所有聚点组成的集合称为A的导集。
- 孤立点
- A中的点x称为A的孤立点,当且仅当它不是A的聚点。
- 孤点集,离散集
- 称A为孤点集或离散集,当且仅当A中所有的点都是A的孤立点。
- 自密集
- 称A为自密集,当且仅当A中的点都是A的聚点(等价地,A中没有A的孤立点)。
- 完备集
- 称A为完备集,当且仅当A等于其导集。
- 自密核
- A的最大自密子集称为A的自密核。
- 无核集
- 称A是无核集,当且仅当A的自密核是∅(或等价地,A的任意非空子集都含有孤立点)。
- X = {1,2,3,4} 和 X 内两个子集组成的集族 τ = {∅, X} 会形成一个平庸拓扑。
- X = {1,2,3,4} 和 X 内六个子集组成的集族 τ = {∅,{2},{1,2},{2,3},{1,2,3},{1,2,3,4}} 会形成另一个拓扑。
- X = ℤ(整数集合)及集族 τ 等于所有的有限整数子集加上 ℤ 自身不是一个拓扑,因为(例如)所有不包含零的有限集合的并集是无限的,但不是 ℤ 的全部,因此不在 τ 内。
- 1个元素的集上总拓扑数显然只有1个。
- 2个元素的集上总拓扑数显然只有4个。
- 3个元素的集上总拓扑数只有29个。
- 4个元素的集上总拓扑数只有355个。
- n个元素的集上总拓扑数规律还在研究中,不过已取得些成果。参见OEIS-A000798说明
3点集 X={a,b,c}的拓扑总共有29个,可分为九类,具体如下:
- {∅, X}
- {∅,{a},X},{∅,{b},X},{∅,{c},X}
- {∅,{a,b},X},{∅,{a,c},X},{∅,{b,c},X}
- {∅,{a},{b,c},X},{∅,{b},{a,c},X},{∅,{c},{a,b},X}
- {∅,{a},{a,b},X},{∅,{a},{a,c},X},{∅,{b},{a,b},X},{∅,{b},{b,c},X},{∅,{c},{a,c},X},{∅,{c},{b,c},X}
- {∅,{a},{a,b},{a,c},X},{∅,{b},{a,b},{b,c},X},{∅,{c},{a,c},{b,c},X}
- {∅,{a},{b},{a,b},X},{∅,{a},{c},{a,c},X},{∅,{b},{c},{b,c},X}
- {∅,{a},{b},{a,b},{a,c},X},{∅,{a},{b},{a,b},{b,c},X},{∅,{a},{c},{a,b},{a,c},X},{∅,{a},{c},{a,c},{b,c},X},{∅,{b},{c},{a,b},{b,c},X},{∅,{b},{c},{a,c},{b,c},X}
- {∅,{a},{b},{c},{a,b},{a,c},{b,c},X}
依据点和集合分离的程度、大小、连通程度、紧性等。可以对拓扑空间进行各种各样的分类。并且由于这些分类产生了许多不同的术语。
以下假设X为一个拓扑空间。
详细资料请参照分离公理以及相关条码。有些术语在老的文献中采用了不同地定义方式,请参照分离公理的历史。
- 拓扑不可区分性
- X中两个点x,y称为拓扑不可区分的,当且仅当如下结论之一成立:
- 对X中每个开集U,或者U同时包含x,y两者,或者同时不包含它们。
- x的邻域系和y的邻域系相同。
- ,且。
可度量性意味着可赋予空间一个度量,使之给出该空间的拓扑。目前已有许多版本的度量化定理,其中最著名的是Urysohn度量化定理:一个第二可数的正则豪斯多夫空间可被度量化。由此可导出任何第二可数的流形皆可度量化。
对于任一类代数结构,我们都可以考虑其上的拓扑结构,并要求相关的代数运算是连续映射。例如,一个拓扑群乃是一个拓扑空间配上连续映射(群乘法)及(逆元),使之具备群结构。
同样地,可定义拓扑向量空间为一个赋有拓扑结构的向量空间,使得加法与纯量乘法是连续映射,这是泛函分析的主题;我们可以类似地定义拓扑环、拓扑域等等。
结合拓扑与代数结构,往往可以引出相当丰富而实用的理论,例如微分几何探究的主齐性空间。在代数数论及代数几何中,人们也常定义适当的拓扑结构以简化理论,并得到较简明的陈述;如数论中的局部域(一种拓扑域),伽罗瓦理论中考虑的Krull拓扑(一种特别的拓扑群),以及定义形式概形所不可少的I-进拓扑(一种拓扑环)等等。