在统计学中,最大似然估计(英语:maximum likelihood estimation,简作MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法。
下方的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。读者还须先熟悉连续实函数的基本性质,比如使用微分来求一个函数的极值(即极大值或极小值)。
同时,读者须先拥有似然函数的背景知识,以了解最大似然估计的出发点及应用目的。
给定一个概率分布,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为,以及一个分布参数,我们可以从这个分布中抽出一个具有个值的采样,利用计算出其似然函数:
若是离散分布,即是在参数为时观测到这一采样的概率;若其是连续分布,则为联合分布的概率密度函数在观测值处的取值。一旦我们获得,我们就能求得一个关于的估计。最大似然估计会寻找关于的最可能的值(即,在所有可能的取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的值即称为的最大似然估计。由定义,最大似然估计是样本的函数。
最大似然估计可以从相对熵推导而来。相对熵衡量了使用一个给定分布来近似另一个分布时的信息损失,对于离散型随机变量,可以用以下公式:
其中,是真实分布,是近似分布。在最大似然估计的情景下,假设分布拥有一系列参数,我们希望通过样本得到参数的估计值。我们可以利用相对熵来评判估计的好坏:
根据期望的定义,我们可以将上式改写为:
KL值越大,参数估计越坏,因此,需要通过改变估计参数的值来获得最小的值,所对应的参数极为最佳估计参数。即:
假设有个样本,根据大数定理,可以进行替换:
即,可以通过下式评估:
对于一个已知的分布,其参数是确定的。因此,为常数。因此,我们可以通过最小化KL值获得最佳估计参数:
因此,要得到最佳参数估计值,只需要最大化,这就是最大似然函数。对于连续型随机变量,有相同的结论。
考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为,抛出一个反面的概率记为(因此,这里的即相当于上方的)。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为, , ,这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:
我们可以看到当时,似然函数取得最大值。
显然地,这硬币的公平性和那种抛出后正面的概率是2/3的硬币是最接近的。这就是的最大似然估计。
最常见的连续概率分布是正态分布,其概率密度函数如下:
现在有个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:
也可以写为:
- ,
这个分布有两个参数:.有人可能会担心两个参数与上方的讨论的例子不同,上方的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上方例子同样的符号,我们有.
最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凹函数。[注意:可能性函数(似然函数)的自然对数跟信息熵以及费希尔讯息联系紧密。]求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:
这个方程的解是.这的确是这个函数的最大值,因为它是里头惟一的一阶导数等于零的点并且二阶导数严格小于零。
同理,我们对求导,并使其为零。
这个方程的解是.
因此,其关于的最大似然估计为:
- .
最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差,其证明可见于克拉马-罗下限。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。
对于独立的观察来说,最大似然估计函数经常趋于正态分布。
最大似然估计最早是由罗纳德·费希尔在1912年至1922年间推荐、分析并大范围推广的。[2](虽然以前高斯、拉普拉斯、托瓦尔·尼古拉·蒂勒和F. Y. 埃奇沃思也使用过)。[3] 许多作者都提供了最大似然估计发展的回顾。[4]
大部分的最大似然估计理论都在贝叶斯统计中第一次得到发展,并被后来的作者简化。[2]