弹性模量是指当有力施加于物体或物质时,其弹性变形(非永久变形)趋势的数学描述。物体的弹性模量定义为弹性变形区的应力-应变曲线的斜率: λ = def stress strain {\displaystyle \lambda \ {\stackrel {\text{def}}{=}}\ {\frac {\text{stress}}{\text{strain}}}} 其中λ是弹性模量,stress(应力)是引起受力区变形的力,strain(应变)是应力引起的变化与物体原始状态的比。应力的单位是帕斯卡,应变是没有单位的(无量纲的),那么λ的单位也是帕斯卡。 均质各向同性(固体)材料的(线性)弹性性质可以由4种弹性模量中的任意2种弹性模量完全描述清楚,如下表所示。 无粘性流体不能支撑剪切应力,因此剪切模量总为零,从而杨氏模量也总为零。 检测方法 弹性模量检测方法分为静态法(例如静荷重法)和动态法(例如共振法)两种。使用动态法产生的结果就是动模量或称动弹性模量。 参见 刚度 弹性极限 弹性 (物理学) 杨氏模量 脉冲激励法 抗拉强度 弹性波 动模量 抗弯刚度 横观各向同性 弯曲模量 参考文献 C. Hartsuijker, J.W. Welleman. Engineering Mechanics Volume 2. Springer. 2001. ISBN 978-1-4020-4123-5. More information , ... 换算公式 均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由下列换算公式求出其他所有的弹性模量。 ( λ , G ) {\displaystyle (\lambda ,\,G)} ( E , G ) {\displaystyle (E,\,G)} ( K , λ ) {\displaystyle (K,\,\lambda )} ( K , G ) {\displaystyle (K,\,G)} ( λ , ν ) {\displaystyle (\lambda ,\,\nu )} ( G , ν ) {\displaystyle (G,\,\nu )} ( E , ν ) {\displaystyle (E,\,\nu )} ( K , ν ) {\displaystyle (K,\,\nu )} ( K , E ) {\displaystyle (K,\,E)} ( M , G ) {\displaystyle (M,\,G)} K = {\displaystyle K=\,} λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} 2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} E = {\displaystyle E=\,} G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} 9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} 9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} 2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} 3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} λ = {\displaystyle \lambda =\,} G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} 2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} 3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} 3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} M − 2 G {\displaystyle M-2G\,} G = {\displaystyle G=\,} 3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} 3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} 3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} ν = {\displaystyle \nu =\,} λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} 3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} 3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}} M = {\displaystyle M=\,} λ + 2 G {\displaystyle \lambda +2G\,} G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}} 3 K − 2 λ {\displaystyle 3K-2\lambda \,} K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}} λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} 2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}} E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}} 3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}} 3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}} Close Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.