杨氏模量,也称杨氏模数(英语:Young's modulus),一般将杨氏模量习惯称为弹性模量,是材料力学中的名词。弹性材料承受正向应力时会产生正向应变,在形变量没有超过对应材料的一定弹性限度时,定义正向应力与正向应变的比值为这种材料的杨氏模量。公式记为 E = σ ε {\displaystyle E={\frac {\sigma }{\varepsilon }}} 或是 P = E ⋅ ε ⋅ A {\displaystyle P=E\cdot {\varepsilon }\cdot A} 其中, E {\displaystyle E} 表示杨氏模量, σ {\displaystyle \sigma } 表示正向应力, P {\displaystyle P} 表示轴力, A {\displaystyle A} 表示断面面积, ε {\displaystyle \varepsilon } 表示正向应变。 杨氏模量以英国科学家托马斯·杨命名。 Remove ads各种材料的杨氏模量约值 杨氏模量取决于材料的组成。举例来说,大部分金属在合金成分不同、热处理在加工过程中的应用,其杨氏模量值会有5%或者更大的波动。正如以下的很多材料的杨氏模量值非常接近。 更多信息 杨氏模量 ( ... 不同固体的杨氏模量约值 材料 杨氏模量 ( E {\displaystyle E} ) / G {\displaystyle G} P a {\displaystyle Pa} 杨氏模量 ( E {\displaystyle E} ) / lbf/in² 橡胶(微小应变) 0.01-0.1 1,500-15,000 低密度聚乙烯 0.2 30,000 聚丙烯 1.5-2 217,000-290,000 聚对苯二甲酸乙二酯 2-2.5 290,000-360,000 聚苯乙烯 3-3.5 435,000-505,000 尼龙 2-4 290,000-580,000 橡木(颗粒表面) 11 1,600,000 高强度混凝土(受到压缩) 30 4,350,000 金属镁 45 6,500,000 玻璃(所有种类) 71.7 10,400,000 铝 69 10,000,000 黄铜和青铜 103-124 17,000,000 钛 (Ti) 105-120 15,000,000-17,500,000 碳纤维强化塑料(单向,颗粒表面) 150 21,800,000 合金与钢 190-210 30,000,000 钨 (W) 400-410 58,000,000-59,500,000 碳化硅(SiC) 450 65,000,000 碳化钨(WC) 450-650 65,000,000-94,000,000 单碳纳米管[1] approx. 1,000 approx. 145,000,000 钻石 1,050-1,200 150,000,000-175,000,000 关闭 Remove ads单位 杨氏模量的量纲同压强,在SI单位制中,压力的单位为Pa也就是帕斯卡。 但是通常在工程的使用中,因各材料杨氏模量的量值都十分的大,所以常以百万帕斯卡(MPa)或十亿帕斯卡(GPa)作为其单位。 1 M P a = 1 × 10 6 P a = 1 N m m 2 {\displaystyle 1\ \mathrm {MPa} =\mathrm {1} \times 10^{6}\ \mathrm {Pa} =1\ {\begin{matrix}{\frac {\mathrm {N} }{\mathrm {mm} ^{2}}}\end{matrix}}} (1牛顿每平方毫米为1MPa) 1 G P a = 1 × 10 9 P a = 1 k N m m 2 {\displaystyle 1\ \mathrm {GPa} =\mathrm {1} \times 10^{9}\ \mathrm {Pa} =1\ {\begin{matrix}{\frac {\mathrm {kN} }{\mathrm {mm} ^{2}}}\end{matrix}}} (1千牛顿每平方毫米为1GPa) Remove ads参看 固体力学 连续介质力学 机械设计 刚度 硬度 挠度(Deflection) 形变(Deformation) 应变 应力 抗拉强度(Tensile strength) 韧性(Toughness) 降伏强度 胡克定律 蒲松氏比 参考文献 [1]ELECTRONIC AND MECHANICAL PROPERTIES OF CARBON NANOTUBES (PDF). [2005-08-21]. (原始内容存档 (PDF)于2005-10-29). 更多信息 , ... 换算公式 均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由下列换算公式求出其他所有的弹性模量。 ( λ , G ) {\displaystyle (\lambda ,\,G)} ( E , G ) {\displaystyle (E,\,G)} ( K , λ ) {\displaystyle (K,\,\lambda )} ( K , G ) {\displaystyle (K,\,G)} ( λ , ν ) {\displaystyle (\lambda ,\,\nu )} ( G , ν ) {\displaystyle (G,\,\nu )} ( E , ν ) {\displaystyle (E,\,\nu )} ( K , ν ) {\displaystyle (K,\,\nu )} ( K , E ) {\displaystyle (K,\,E)} ( M , G ) {\displaystyle (M,\,G)} K = {\displaystyle K=\,} λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} 2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} E = {\displaystyle E=\,} G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} 9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} 9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} 2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} 3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} λ = {\displaystyle \lambda =\,} G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} 2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} 3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} 3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} M − 2 G {\displaystyle M-2G\,} G = {\displaystyle G=\,} 3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} 3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} 3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} ν = {\displaystyle \nu =\,} λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} 3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} 3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}} M = {\displaystyle M=\,} λ + 2 G {\displaystyle \lambda +2G\,} G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}} 3 K − 2 λ {\displaystyle 3K-2\lambda \,} K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}} λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} 2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}} E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}} 3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}} 3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}} 关闭Remove adsWikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for FirefoxRemove ads
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.