Loading AI tools
n维流形上的一类等价关系 来自维基百科,自由的百科全书
微分几何中,叶状结构(foliation)是n-流形上的等价关系,等价类是连通单射浸入子流形,都具有相同维度p,以实坐标空间的分解为标准嵌入子空间的陪集为模型。等价类称作叶状结构的叶(leaf)。[1]若要求流形和/或子流形具有(类的)分段线性、微分或解析结构,就可分别定义分段线性、微分、解析叶状结构。在最重要的类微分叶状结构中,通常r ≥ 1(否则就是拓扑叶状结构)。[2]p(叶的维度)称作叶状结构的维度,称作其余维数。
在数学物理学家关于广义相对论的一些论文中,“叶状结构”用于描述:相关的洛伦兹流形((p+1)维时空)分解为p维超平面,指定为梯度处处不为零的实值光滑函数(标量场)的水平集;这光滑函数通常被假定为时间函数,梯度处处类时间,因此其水平集都是类空间超平面。为与标准数学术语保持一致,这些超平面通常称作叶状结构的叶。[3]注意,虽然这情形确实构成标准数学意义上的余维-1叶状结构,但这类例子是全局平凡的。虽然(数学)余维-1叶状结构的叶局部上总是函数的水平集,但一般不能在全局这样表达,[4][5]因为叶可能无限多次通过局部平凡化坐标图,叶周围的完整也可能阻碍叶的全局一致定义函数的存在。例如,虽然3-球面有一个由里布发现的余维1-叶状结构,但闭流形的余维-1叶状结构不能由光滑函数的水平集给出,因为闭流形上的光滑函数必然在最值点有临界点。
叶状结构好比是一种给流形穿的条纹织物的衣服。在流形的每个足够小的片上,这些条纹给了流形一个局部乘积结构,不需在局部区域之外一致(不用有良定义的整体结构):沿着一个条纹走足够远,可能回到不同的邻近的条纹。
为给叶状结构下精确定义,需先定义一些辅助元素。
中的矩邻域是形式为的开子集,其中是第i个坐标轴上(可能无界)的相对开区间。若具有形式,则称B具有边界[6]
在下面的定义中,坐标图(coordinate chart)被认为是在,允许流形具有边界和(凸)角的可能。
n-流形M上余维为q的叶状图(foliated chart)是,其中是开集,是微分同胚,是中的矩邻域,是中的矩邻域。集合,其中称作这叶状图的斑(plaque)。,集合称作叶状图的横截(transversal)。集合称作U的切边界(tangential boundary),称作U的横截边界(transverse boundary)。[7]
叶状图是所有叶状结构的基本模型,斑就是叶。表示“B-切”,表示“B-截”。还有多种可能。若都有空边界,则叶状图就建模了无界n-流形的余维-q叶状结构。若其中一个矩邻域有界,则叶状图建模了有界无角n-流形的叶状结构的各种可能性。具体来说,若,则是斑之并,斑表示的叶状结构切于边界。若,则是横截之并,叶状结构横截于边界。最后,若,则建模了叶状流形(foliated manifold),角分开了切边界与横截边界。[7]
n-流形M上余维为q的类叶状图册(foliated atlas)是余维为q的叶状图的-图册,只要P、Q在的不同图中都是斑,P ∩ Q在P、Q中都是开的,它们就是相干叶状结构(coherently foliated)。[8]
重新表述相干叶状图的有效方法是将写作:[9]
常写作,其中[9]
在上,坐标公式可改写为[9]
是相干叶状结构这一条件意味着,若是斑,则的连通分量位于的(可能不同的)斑中。等价地,由于的斑分别是横坐标的水平集,都有邻域,其中公式
与无关。[9]
叶状图册的主要用处是将重叠的斑连接起来,形成叶状结构;上述一般定义显得有点笨拙,一个问题是,的斑可以与多个的斑相遇。甚至可能出现,一个图的斑与另一图的无穷多个斑相遇。不过,如下所示,假设情形更规则,也不失一般性。
若是叶状图册,则M上两具有相同余维和光滑度的类叶状图册是相干的:。叶状图册的相干是等价关系。[9]
上面定义的开集上的斑与横截也是开的。不过,我们也可以谈论闭的斑与横截:若都是叶状图,使得(U的闭包)是W的子集,;则,若可知,写作,将微分同胚地带到
符合以下条件的叶状图册称作规则的(regular):
根据性质 (1),坐标延伸到上的坐标,可以写成性质 (3)等价于要求:若,横坐标变化独立于即
有公式[11]
类似论断也适于开图(无覆盖线)。横坐标映射可视作浸没
公式可视作微分同胚
它们满足上循环条件,即,在上,
尤其是,[12]
用上述关于相干性和规则性的定义,可证明每个叶状图册都有规则的相干细化。[13]
证明 [13] |
---|
固定M上的一个度量核一个叶状图册传递到子覆盖,如有必要,可假设有限。令ε > 0是的勒贝格数,即直径< ε的都完全位于某个中。,择j使得、择叶状图使得 设,并照常记是横坐标映射。这是浸没,以中的斑为水平集。因此,限制到浸没 这在中是局部为常的;因此,若有必要可以选择较小的,假定以的斑为水平集。即,的斑最多与的一个(紧)斑相遇(因此包含)。由于1 < k < l < ∞,可以择,使得只要,的不同斑就位于的不同斑中。传递到的有限子图册。若,于是存在索引k使得。的不同斑(分别是的不同斑)位于的不同斑中。因此的每个斑内部最多与的一个斑相交,反之亦然。根据构造,是的相干细化,是规则叶状图册。 若M非紧,局部紧性和第二可数性允许我们选择紧子集序列,使得。传递到子图集,假定可数,且可找到严格递增正整数列使是的覆盖。令表示到的距离,并择,小到对于,都有(是(作为的开覆盖)与(作为的开覆盖)的勒贝格数)。更确切地说,若与相遇(或),且,则X位于的某个元素中(或)。,与紧情形一样构造,要求是的紧子集,且。同时,要求。和之前一样,传递到的有限子覆盖(此处取。)这样就创造了规则叶状图册,细化了并与相干。 |
根据实现叶状结构的方式,有几种不同的定义。最常见方式是通过流形分解,得到
定义 n维流形M的p-维类叶状结构是将M分解为不交连通子流形的并,称作叶状结构的叶(leaf),具有如下性质:M的点都有邻域U和局部类坐标系,使得对每片叶,的组分都由方程组描述。则,叶状结构记作[5]
叶的概念可以让我们直观地思考叶状结构。若用稍微几何化的定义,n维流形M的p维叶状结构也许可简单视作M的逐对不交、连通浸没的p维子流形(叶状结构的叶)的集合,使得对点,都有图,其中U同胚于,包含的x使得对每片叶,与U相遇或为空集或为子空间的可数集,其在中的像下是前n-p个坐标为常数的p维仿射子空间。
叶状结构局部上都是浸没,允许下列定义
定义 令M、Q是n维流形,q≤n,并令是浸没,即假设函数微分矩阵(雅可比矩阵)的秩为q,则据隐函数定理,ƒ在M上诱导了余维为q的叶状结构,其中的叶定义为[5]
这定义描述了n维流形M的p维叶状结构,是由图(chart)与下列映射覆盖的:
这样,对重叠对,转移函数定义为
形式为
其中x表示前个坐标,y表示后p个坐标(co-ordinates),即
将转移函数拆分为,作为浸没的一部分完全类似于将拆分为,作为规则叶状图册定义的一部分。这使得可以用规则叶状图册定义叶状结构成为可能。为此,必须首先证明,余维度为q的规则叶状图册都与唯一的余维度为q的叶状结构相关联。[13]
证明[13] |
---|
令是余维为q的规则叶状图册。在M上定义等价关系:x ~ y,当且仅当-斑使得,或有-斑的序列使得成立。称序列L为连接x、y的长p的斑链。时,可以说是连接x、y的长度为0的斑链。~是等价关系,这很清楚;同样明显的是,等价类L都是斑的并。由于-斑只能在彼此的开子集中相互重叠,所以L在局部是维度为n-q的拓扑浸入(immerse)子流形。斑的开子集在L上构成了n-q维的局部欧氏拓扑的基,L在这拓扑中显然是连通的。要检验L是否为豪斯多夫空间也是平凡的,主要问题是要证明L第二可数。由于斑都是第二可数的,所以对L只需证L中-斑集最多为可数无穷。固定一个这样的斑,根据规则叶状图册的定义,其只与有限多个其他斑相遇。即,只有有限多长1的斑链。归纳始于的p长斑链,同样可证明长度≤ p的斑链只有有限多条。根据~的定义,L中所有-斑都可通过始于的有限斑链抵达,因此可得上述论断。 |
正如证明所示,叶状结构的叶是长度 ≤ p的斑链的等价类,也是拓扑浸入豪斯多夫p维子流形。接着,我们将证明叶上斑的等价关系可用相干叶状图册的等价来表示,即它们与叶状结构的联系。更具体地说,若是M上的叶状图册、且若与叶状结构相关联,则当且仅当也与相关联时,相干。[10]
证明[10] |
---|
若也与相关联,则每片叶L都是-斑与-斑的并。这些斑在L的流形拓扑中是开子集,因此交于彼此的开子集。由于斑是连通的,所以不在同一片叶的-斑不能交-斑;因此叶状图册是相干的。反之,若只知道与相关联、,令Q是-斑。若L是的叶,且,令是-斑,则是w在Q中的开邻域,且。由于是任意的,可知是开的;由于L也是任意的叶,所以Q可分解为不交的开子集,每个都是Q与中某叶的交。又由于Q连通,最后,Q也是任意的-斑,所以与相关联。 |
现在很明显,M上的叶状结构与叶状图册间的关联关系产生了M的叶状结构集同叶状图册的相干类集之间的一一对应,换句话说,M上余维为q的类叶状结构是余维为q的类叶状图册的相干类。[14]据佐恩引理,叶状图册相干类显然包含唯一的最大叶状图册。于是,
定义 M上余维为q的类叶状结构是M上余维为q的最大叶状-图册。[14]
实践中,通常用较小的叶状图册表示叶状结构,通常还要求是规则的。
在图中,条纹与别的图上的条相匹配。这些子流形在图之间拼接成最大连通单射浸入子流形,就是叶状结构的叶(leaf)。 若缩小图,可以写成,其中与斑同构,的点参数化了中的斑。若择,则是的子流形,与每个斑恰交一次,这叫做叶状结构的局部横截面。注意,由于单值性的原因,全局横截面可能不存在。
r = 0的情形比较特殊。实践中出现的叶状结构通常是“光滑叶”。更确切地说,是以下意义的类:
定义 若叶状图册的相应相干类包含规则叶状图册,使得坐标变换式
属于类,但在坐标中是类,其阶数≤ r、与的混合偏导数在坐标中是类,则称叶状结构属于类。[14]
上述定义是所谓“叶状空间”的更一般概念。我们可以放宽横截的条件为的相对紧开子集,允许横坐标在更一般的拓扑空间Z中取值。斑仍是的相对紧开子集,横坐标公式的变化是连续的,在坐标中属于类,其阶数 ≤ r 、与的混合偏导数在坐标中连续。一般要求M、Z为局部紧可测第二可数空间。这似乎是很狂野的推广,但在一些情形下很有用。[15]
令是叶状流形(foliated manifold)。设L是的叶,s是L中的路径,我们感兴趣的是M中s的邻域中叶状结构的行为。直观地说,在叶上可以沿路径s行走,同时关注附近所有叶。在他(以下写作s(t))行走时,一些叶可能会“掉落”、变得不可见;另一些可能会突然进入可视范围,渐渐接近L;还有些可能会以接近平行的方式跟随L,或垂直地打转之类。若s是环路,则随着t增大,s(t)会反复回到同一个点s(t0),每次都会有更多叶螺旋状地进入或离开视野。这种行为经过适当的形式化,叫做叶状结构的完整性(holonomy)。
完整性在叶状流形上有多种具体实现方式:叶状丛(foliated bundle)的总完整群、一般叶状流形的完整伪群、一般叶状流形的亏格完整广群、叶的亏格完整群、叶的无穷小完整群。
最容易理解的完整性是叶状丛的总完整性,这是庞加莱映射概念的推广。
“第一回归映射”来自动力系统理论。令是紧n-流形上的非奇异流。应用中,可以想象M是个回旋加速器或流体的闭合回路。若M有界,则假定流与界相切。流生成了1维叶状结构。若知道流的正方向,但不知道其他参数(轨迹形状、速度等),则称底叶状结构(underlying foliation)有向。假设流有全局横截面N,即N是M的n-1维紧正合嵌入的子流形,叶状结构垂直于N,每条流线都与N相遇。由于N的维度与叶的维度是互补的,横截性条件是
令,考虑M中所有序列的所有堆积点的ω-极限集合ω(y),其中为无穷大。可以证明,ω(y)是紧非空的,是流线的并。若则有值使得,由此可得
由于N是紧的,横截于N,因此集合是单调递增序列,并发散。
当变化,令,这样定义一个正函数(第一回归时间),使得
定义这是映射。若流反向,则完全相同的构造会得到逆的;所以。这个微分同胚是第一回归映射,τ称作第一回归时间。虽然第一回归时间取决于流的参数化,但f显然只取决于有向叶状结构。可以将流重参数化,使其保持非奇异、是类,且方向不翻转,从而使
流有横截面N的假设是很受限的,意味着M是上纤维丛的总空间。事实上在上,可将定义为以下条件生成的等价关系:
等价地,这是加法群Z在上的作用的轨等价,定义如下
f的映射圆柱定义为流形
由第一回归映射f的定义与第一回归时间的假设,可立即得出映射
流的定义可诱导一个规范微分同胚
若记,则到R的投影诱导了映射
使M变为圆上纤维丛的总空间。这只是到的投影。叶状结构横截于这丛的纤维,限制到每片叶L的丛投影π是覆盖映射,这就是叶状丛(foliated bundle)。
以的等价类为基点,就是原横截面N。对上以为基点的每个环路s,同伦类的唯一特征是。环路s提升到每条流线中的一条路径,很明显提升始于、终于。微分同胚也用表示,称作环路s的总整体性。由于只取决于[s],因此定义了同胚
称作叶状丛的总整体同胚。
更直观地运用纤维丛,令是余维为q的叶状n-流形,令是纤维丛,具有q维纤维F与连通基空间B。假设所有这些结构都属于类,若r = 0,B支持一个结构。由于B上的最大图册都包含子图册,因此假设B如所期望那般光滑并不失一般性。最后,,假设x有连通开邻域,和局部平凡化
其中φ是微分同胚(若r = 0则是同胚),将带到积叶状结构。其中,是叶为的连通组分的叶状结构,L是的叶。这是类“叶状丛”(foliated bundle)的一般定义。
垂直于π的纤维(可以说是垂直于纤维的),π到的每片叶L的限制是覆盖映射。特别是,每条纤维都与的每片叶相遇。纤维是的横截,与流的横截完全类似。
叶状结构横截于纤维不能保证叶是B的覆盖空间。这个问题的一个简单版本是的一个叶状结构横截于纤维
但有无限多叶缺失了y轴。在相应的图像中,“有箭头的”叶以及它们上面所有的叶都渐进于x = 0轴。一般称这种叶状结构为相对于纤维是不完备的,即当参数接近某个,一些叶“奔向无穷大”。更确切地说,可能有叶L,和一条连续路径使得,但在L的流形拓扑中不存在。这类似于不完备流,某些流线会在有限时间内发散。虽然这样的叶L可能在别处与相遇,但不能均匀覆盖的邻域,因此不可能是B在π下的的覆盖空间。F是紧的时,对纤维的横截性确实保证了完备性,于是是叶状丛。
B上有图册,包含开连通坐标图,以及平凡化,将带到积叶状结构。置,并记,其中(滥用符号)表示是将与规范投影组合而得的浸没。
图册的作用类似叶状图册。的斑是的水平集,这一族斑通过,与F相同。由于预设了B支持某个结构,据怀特黑德定理,可在B上固定一个黎曼度量,择图册为测地凸的。于是,总是连通的。若这个交非空,则的每个斑都正好与的一个斑相遇。然后,通过设下式,可定义一个完整上循环(holonomy cocycle) by setting
考虑n维空间,是由前n-p个坐标为常数的点组成的子空间之积。这可以用一张图(chart)表示,其基本原理是,叶或斑由枚举。置n = 3、p = 2,可以类比三维空间:书的2维叶由(1维)页码枚举。
较平凡的叶状结构例子是积,叶(M的另一个叶状结构由给出)。
对流形F而言,的平坦G-丛是更一般的一类。给定表示,具有单值ρ的平坦-丛由给出,其中通过甲板变换作用于万有覆盖,通过表示ρ作用于F。
平坦丛符合纤维丛的框架。若有流形F使得,都有开邻域U使得有同胚(其中p1是到第一个因子的投影),则流形之间的映射是纤维丛。纤维丛产生了由纤维组成的叶状结构,其叶空间L与B同构,前者是豪斯多夫流形。
若是流形间的覆盖映射,F是N上的叶状结构,则其拉回到M上的叶状结构。更一般地,若映射只是分歧覆盖(分歧轨迹横截于叶状结构),则叶状结构就可以被拉回。
若是流形的浸没,则据反函数定理,浸没的纤维的连通组分定义了M的余维为q的叶状结构。纤维丛是这种类型的一个例子。
不是纤维丛的浸没的一个例子是
这种浸没产生了的叶状结构,在下列作用下是不变的:
其中。的诱导叶状结构称作(环空的)2维里布叶状结构,或(莫比乌斯带的)2维无向里布叶状结构。它们的叶空间都不是豪斯多夫的。
定义一个潜没
其中是n维圆盘上的圆柱坐标。这浸没产生了的叶状结构,在如下Z作用下是不变的:
的诱导叶状结构被称作n维里布叶状结构,其叶空间不是豪斯多夫的。
对于n = 2,这给出了实心环面的叶状结构,可由沿边界粘合两个实心环面,来定义3-球的里布叶状结构。奇数维球的叶状结构也是明确已知的。[16]
若G是李群、H是李子群,则G就会被H的陪集叶化。若H在G中闭合,则商空间是光滑(豪斯多夫)流形,将G转化为纤维丛,纤维H、基为。这个纤维丛实际上是主的,具有结构群H。
令G是光滑作用于流形M的李群。若作用是局部自由作用或自由作用,则G的轨道定义了M的一个叶状结构。
若是非奇异(即无处为零)的向量场,则定义的局部流拼凑在一起,就定义了维度为1的叶状结构。事实上,给定任一点,由于是非奇异的,所以可找到一个关于x的坐标邻域,使得
从几何角度来看,的流线就是水平集
其中所有的由惯例,流形是第二可数的,因此类似“长线”这样的叶异常现象会被M本身的第二可数性排除。要求是完全域(例如M是紧的),从而要求每片叶都是流线,就可以避开这个难题。
环面上的一类重要1维叶状结构来自投影于其上的恒向量场。上的恒向量场
对中所有平移都不变,因此当投影到环面时传递到良定义向量场X。假定a ≠ 0。产生的上的叶状结构的叶具有斜率为的平行线,这叶状结构在平移下也是不变的,并传递到X产生的上的叶状结构。
每片叶的形式是
若斜率是有理的,则所有叶都是与圆同胚的闭合曲线。这时,可取。对固定的,中与的值对应的点都投影到的同一点,于是对应的叶L是中的嵌入圆。由于L是任意的,所以是对圆的叶状结构。由此很容易得出,这个叶状结构实际上就是纤维丛,这就是所谓线性叶状结构。
若斜率是无理的,则叶是非紧的,同胚于非紧实线,在环面中稠密(参无理旋转)。每个点的轨迹永远不会回到同一点,而是在环面上产生“处处稠密”的环绕,会任意接近任何给定的点。于是,轨迹的闭包是整个2维环面。这种情形称作克罗内克叶状结构,得名于利奥波德·克罗内克与
克罗内克稠密性定理 若实数θ不等于π的所有有理倍数,则集合在单位圆内稠密。
证明 |
---|
首先注意,若的叶不是一一投影到,则一定有实数使得ta、tb都是整数。但这意味着。要证的叶L在中都稠密,只需证明,的每片叶与陪集中的适当点间距都是任意小的正距离。中的适当平移使我们可以假设v = 0,这样任务就简化为证明任意地经过合适的点。线具有斜截式 因此,对于任意,只要找到整数n、m使得 等价地,是任意的,就可以证明集合在R中稠密。这实质上就是欧多克索斯关于θ与1不可通约(即θ无理)的标准。 |
用平行线对进行叶状结构的类似构造,可得与环面上的线性流相关的n-环面的1维叶状结构。
平坦丛不仅有对纤维的线性结构,还有横截于纤维的叶状结构,其叶为
其中是规范投影。这个叶状结构称作表示的纬悬。
具体地说,若,是F的同胚,则的纬悬叶状结构定义为表示的纬悬叶状结构,由给出。其叶空间是,其中只要对某个。
纬悬叶状结构最简单的例子是q维流形X。令是双射。将纬悬定义为对等价关系的商。
则,M自动携带两个叶状结构:包含形式的集合;包含形式的集合,其中轨道定义为
其中指数指的是函数f与自身复合的次数。注意,对也同样。理解叶状结构等效于理解映射f的动力学。若流形X已经叶化,则只要f是叶间映射,就可以利用这构造增加叶状结构的余维数。
2-环面的克罗内克叶状结构是旋转(角度为)的纬悬叶状结构。
更具体地说,若是2洞环面,是两个嵌入圆,则是叶的3-流形的积叶状结构。注意是嵌入环,横截于。令表示的保向微分同胚群,并择。将M沿切开,表示它们的副本。这时,流形有4个边界分量叶状结构横截边界的叶状结构,叶的形式为。
这片叶在4个圆中与相遇。若,则中的对应点记作,通过下列标识,“回到”:
由于是的保向微分同胚,因此与恒同(identity)同痕,由这操作得到的流形同胚于M。的叶则重新组合,产生M新的叶状结构。若的叶L 包含一片,则
其中是由生成的子群。这些Σ'的副本通过标识彼此相连:
其中g在G上取值。叶完全由的G-轨道决定,可以很简单也可以很复杂。例如若相应的G-轨道有限,则叶就是紧的。举个极端的例子,若G是平凡的,则。若轨道在中是稠密的,则对应的叶在M中也稠密。例如,若是2π的有理独立倍的旋转,则每片叶都是稠密的。其他例子中,某些叶L的闭包与每个因子在康托尔集中相遇。在上也可做类似构造,其中I是紧非退化区间。这里,取,由于通过所有保向微分同胚逐点固定了,所以可得一个以的两分量为叶的叶状结构。若在这情形下形成M' ,就会得到有角叶状流形。无论哪种情形,这种构造都被称作微分同胚对的纬悬,提供了余维为1的叶状结构的有趣例子。
假设一切都光滑,那么向量场之间有一种密切关系:给定M上不为零的向量场X,其积分曲线将给出1维叶状结构(即余维为n-1的叶状结构)。
这观察可推广为弗罗贝尼乌斯定理,即分布(流形切丛的n − p维子丛)与叶状结构的叶相切的充分必要条件是,与分布相切的向量场集对李括号闭合。这也可以解释为,将切丛的结构群从约化为可约群。
弗罗贝尼乌斯定理中的条件作为可积条件出现,并断言若满足条件,就能约化,因为具有所需块结构的局部转移函数存在。例如,对某(非规范)(即非零余向量场),余维为1时可定义叶状结构的切丛为。若处处都有,则给定的α可积。
由于存在拓扑约束,因此存在全局叶状结构理论。例如,曲面情形中,处处非零向量场只能存在于环面的有向紧曲面上。这是庞加莱-霍普夫定理的结果,指出欧拉示性数需为0。其与切触几何有很多深层联系,专门研究不可积情形。
Haefliger (1970)给出连通非紧流形上的分布与可积分布同伦的充分必要条件。Thurston (1974, 1976)证明,任意有分布的紧流形都有同维度的叶状结构。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.