球對稱位勢乃是一種只與徑向距離有關的位勢。許多描述宇宙相互作用的基本位勢,像重力勢電勢,都是球對稱位勢。這條目只講述,在量子力學裏,運動於球對稱位勢中的粒子的量子行為。這量子行為,可以用薛定諤方程式表達為

其中,普朗克常數是粒子的質量是粒子的波函數位勢是徑向距離,能量

由於球對稱位勢只與徑向距離有關,與天頂角、方位角無關,為了便利分析,可以採用球坐標來表達這問題的薛定諤方程式。然後,使用分離變數法,可以將薛定諤方程式分為兩部分,徑向部分與角部分。

薛定諤方程式

採用球坐標,將拉普拉斯算子展開:

滿足薛定諤方程式的本徵函數的形式為:

其中,,都是函數。時常會合併為一個函數,稱為球諧函數。這樣,本徵函數的形式變為:

角部分解答

參數為天頂角、方位角的球諧函數,滿足角部分方程式

其中,非負整數角動量角量子數(滿足)是角動量對於z-軸的(量子化的)投影。不同的給予不同的球諧函數解答

其中,虛數單位伴隨勒讓德多項式,用方程式定義為

勒讓德多項式,可用羅德里格公式表示為

徑向部分解答

將角部分解答代入薛定諤方程式,則可得到一個一維的二階微分方程式:

(1)

設定函數。代入方程式(1)。經過一番繁雜的運算,可以得到

(2)

徑向方程式變為

(3)

其中,有效位勢

這正是函數為,有效位勢為的薛定諤方程式。徑向距離的定義域是從。新加入有效位勢的項目,稱為離心位勢

為了要更進一步解析方程式(2),必須知道位勢的形式。不同的位勢有不同的解答。

實例

在這裏,有四個很特別、很重要的實例。這些實例都有一個共同點,那就是,它們的位勢都是球對稱的。因此,它們的角部分解答都是球諧函數。這四個實例是:

  1. :原方程式變為亥姆霍茲方程式,使用球諧函數為正交歸一基,解析眞空狀況實例。這實例可以做為別的實例的基礎。
  2. 時,;否則,:這實例比第一個實例複雜一點,可以描述三維的圓球形盒子中的粒子的量子行為。
  3. :研討三維均向性諧振子的實例。在量子力學裏,是少數幾個存在簡單的解析解的量子模型。
  4. :關於類氫原子束縛態的實例,也有簡單的解析解。

真空狀況實例

思考的狀況,設定,在設定無因次的變數

代入方程式(2),定義,就會得到貝塞爾方程式,一個二階常微分方程式

貝塞爾方程式的解答是第一類貝塞爾函數;而是第一類球貝塞爾函數
(真空解的邊界條件要求原點的函數值有限,因此在原點趨於無窮的第二類球貝塞爾函數項的系數必須為零):

(4)

在眞空裏,一個粒子的薛定諤方程式(即自由空間中的齊次亥姆霍茲方程式)的解,以球坐標來表達,是球貝塞爾函數與球諧函數的乘積:

其中,歸一常數是非負整數,是整數,是實數,

這些解答都是角動量確定態的波函數。這些確定態都有明確的角動量。

波函數歸一化導引

波函數的角部分已經歸一化,剩下來必須將徑向部分歸一化。徑向函數的歸一化條件為

根據球貝塞爾函數的封閉方程式

其中,克羅內克δ

所以,。取平方根,歸一常數

球對稱的三維無限深方形位勢阱

Thumb
球貝塞爾函數

思考一個球對稱的無限深方形阱,阱內位勢為0,阱外位勢為無限大。用方程式表達:

其中,是球對稱阱的半徑。

立刻,可以察覺,阱外的波函數是0;而由於阱內的薛定諤方程式與真空狀況的薛定諤方程式相同,波函數是球貝塞爾函數。為了滿足邊界條件,波函數必須是連續的。匹配阱內與阱外的波函數,球貝塞爾函數在徑向坐標之處必須等於0:

設定階球貝塞爾函數的第個0點,則

那麼,離散的能級

薛定諤方程式的整個解答是

其中,歸一常數

波函數歸一化導引

波函數的角部分已經歸一化,剩下來必須將徑向部分歸一化。徑向函數的歸一化條件為

將球貝塞爾函數與第一類貝塞爾函數的關係方程式(4)代入積分:

設定變數,代入積分:

根據貝塞爾函數的正交歸一性方程式

其中,克羅內克δ表示的第個0點。

注意到的第個0點也是的第個0點。所以,

取平方根,歸一常數

三維均向諧振子

三維均向諧振子的位勢為

其中,角頻率

階梯算符的方法,可以證明N維諧振子的能量是

所以,三維均向諧振子的徑向薛定諤方程式是

(5)

設定常數

回想,則徑向薛定諤方程式有一個歸一化的解答:

其中,函數廣義拉蓋爾多項式是歸一化常數:

本徵能級的本徵函數,乘以球諧函數,就是薛定諤方程式的整個解答:

其中。假若是偶數,設定;否則,設定

導引

在這導引裏,徑向方程式會被轉換為廣義拉蓋爾微分方程式。這方程式的解是廣義拉蓋爾多項式。再將廣義拉蓋爾多項式歸一化以後,就是所要的答案。

首先,將徑向坐標無因次化,設定變數;其中,。則方程式(5)變為

(6)

其中,是新的函數。

接近0時,方程式(6)最顯著的項目是

所以,成正比。

又當無窮遠時,方程式(6)最顯著的項目是

因此,成正比。

為了除去在原點與無窮遠的極限性態,達到孤立解答函數的形式的目的,必須使用的替換方程式:

經過一番運算,這個替換將微分方程式(6)轉換為

(7)
轉換為廣義拉蓋爾方程式

設定變數,則微分算子為

代入方程式(7),就可得到廣義拉蓋爾方程式:

其中,函數

假若,是一個非負整數,則廣義拉蓋爾方程式的解答是廣義拉蓋爾多項式:

因為是非負整數,要求

  1. 同時為奇數或同時為偶數。這證明了前面所述必須遵守的條件。
波函數歸一化

回憶到,徑向函數可以表達為

其中,是歸一常數。

的歸一條件是

設定。將代入積分方程式:

應用廣義拉蓋爾多項式的正交歸一性,這方程式簡化為

因此,歸一常數可以表達為

應用伽瑪函數的數學特性,同時注意的奇偶性相同,可以導引出其它形式的歸一常數。伽瑪函數變為

在這裏用到了雙階乘 (double factorial)的定義。

所以,歸一常數等於

類氫原子

類氫原子只含有一個原子核與一個電子,是個簡單的二體系統。兩個物體之間,互相作用的位勢遵守庫侖定律

其中,真空電容率原子序單位電荷量是電子離原子核的徑向距離。

將位勢代入方程式(1),

這方程式的解答是

其中,近似於玻爾半徑。假若,原子核的質量是無限大的,則,並且,約化質量等於電子的質量,是廣義拉蓋爾多項式,定義為[1]

其中,拉蓋爾多項式,可用羅德里格公式表示為

為了滿足的邊界條件,必須是正值整數,能量也離散為能級。隨着量子數的不同,函數都會有對應的改變。為了要結束廣義拉蓋爾多項式的遞迴關係,必須要求

知道徑向函數與球諧函數的形式,就可以寫出整個類氫原子量子態的波函數,也就是薛定諤方程式的整個解答:

導引

為了要簡化薛定諤方程式,設定能量與長度的原子單位 (atomic unit)

將變數代入徑向薛定諤方程式(2):

(8)

這方程式有兩類解答:

  1. :量子態是束縛態,其本徵函數是平方可積函數。量子化的造成了離散的能量譜。
  2. :量子態是散射態,其本徵函數不是平方可積函數。

這條目只講述第(1)類解答。設定正實數。代入方程式(8):

(9)

接近0時,方程式(9)最顯著的項目是

所以,成正比。

又當無窮遠時,方程式(9)最顯著的項目是

因此,成正比。

為了除去在原點與無窮遠的極限性態,達到孤立解答函數的形式的目的,必須使用的替換方程式:

經過一番運算,得到的方程式:

其中,

假若,是個非負整數 ,則這方程式的解答是廣義拉蓋爾多項式

採用Abramowitz and Stegun的慣例[1]。無因次的能量是

其中,主量子數滿足,或

由於,徑向波函數是

能量是

參閱

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.