普朗克常數記為,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物體熱輻射的規律時發現,只有假定電磁波的發射和吸收不是連續的,而是一份一份地進行的,計算的結果才能和實驗結果是相符。這樣的一份能量叫做能量子,每一份能量子等於普朗克常數乘以電磁輻射的頻率。這關係稱為普朗克關係,用方程式表示普朗克關係式

Thumb
馬克斯·普朗克對普朗克常數的發現設立於柏林洪堡大學的紀念牌匾。德語翻譯:「馬克斯·普朗克,基本常數的發現者,從1889年至1928年在這個大樓教過書。」

其中, 是能量, 是普朗克常數, 是頻率。

普朗克常數的值約為:其中電子伏特(eV)為能量單位。

Js.[1]
eVs[2]

普朗克常數的量綱能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·(m)·秒(s))

普朗克常數的量綱跟角動量相同。

新的普朗克常數已被ISO設定為h = 6.62607015×10−34 (J·s)[3][4]

約化普朗克常數

另一個常用的量為約化普朗克常數(英語:reduced Planck constant),有時稱為狄拉克常數(英語:Dirac constant),紀念保羅·狄拉克

其中為圓周率常數pi唸為「h-bar」。

普朗克常數用以描述量子化,微觀下的粒子,例如電子光子,在一確定的物理性質下具有一連續範圍內的可能數值。例如,一束具有固定頻率,其能量可為:

有時使用角頻率

許多物理量可以量子化。例如角動量量子化。為一個具有旋轉不變量的系統全部的角動量,為沿某特定方向上所測得的角動量。其值:

因此, 可稱為「角動量量子」。

普朗克常數也適用於海森堡不確定原理。在位移測量上的不確定量(標準差,和同方向在動量測量上的不確定量,有如下關係:

還有其他組物理測量量依循這樣的關係,例如能量時間

1919年,阿諾·索末菲在他的《原子構造和光譜線》一書中最早將1900年12月14日稱為「量子理論的誕辰」,後來的科學史家們將這一天定為了量子的誕生日。

相關條目

參考文獻

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.