热门问题
时间线
聊天
视角
二十四面體
24個面的多面體 来自维基百科,自由的百科全书
Remove ads
在幾何學中,二十四面體是指有24個面的多面體[3],在二十四面體當中沒有任何一個形狀是正多面體,換言之即正二十四面體並不存在,但仍有許多由正多邊形組成的二十四面體,例如三側錐正十二面體和五角錐球狀屋頂,也有一些接近球狀但並非由正多邊形組成的二十四面體,其中對稱性較高的是三角化八面體和鳶形二十四面體等卡塔蘭立體、對稱性較低的是部分詹森多面體的對偶多面體,例如雙四角帳塔反角柱的對偶和異相雙四角帳塔柱的對偶。此外要構成二十四面體至少要有14個頂點[4]。
Remove ads
常見的二十四面體
二十三角錐是一種底面為二十三邊形的錐體,為二十四面體的一種,具有24個面、46條邊和24個頂點,其對偶多面體是自己本身[5]。正二十三角錐是一種底面為正二十三邊形的二十三角錐,在施萊夫利符號中可以用{}∨{23}來表示。底邊長為、高為的正二十三角錐體積和表面積為[5]:
Remove ads
二十二角柱是一種底面為二十二邊形的柱體,是二十四面體的一種,由24個面和66條邊和44個頂點組成。正二十二角柱代表每個面都是正多邊形的二十二角柱,其每個頂點都是2個正方形和1個二十二邊形的公共頂點,頂點圖以表示。其在施萊夫利符號中可以用{22}×{}或t{2,22}來表示,在考克斯特符號中可以用來表示,在威佐夫符號中可以利用2 22 | 2來表示,在康威多面體表示法中可以利用P22來表示。底邊長為、高為的正二十二角柱體積和表面積為[6]:

十一角反稜柱是指底面為十一邊形的反稜柱,由24個面、44條邊和22個頂點組成。正十一角反稜柱代表每個面都是正多邊形的十一角反稜柱,其每個頂點都是3個三角形和1個十一邊形的公共頂點,頂點圖以3.3.3.11表示。
十二方偏方面體是一種以十二邊形為底的偏方面體,由24個全等的鳶形組成,為十二角反角柱的對偶多面體[7],同時也是鳶形多面體,是偏方面體系列的第十個成員。所有十二方偏方面體都有24個面、48條邊和26個頂點[7],其中,頂點有兩種,分別為12個鳶形的公共頂點和3個鳶形的公共頂點。
十二方偏方面體是一個等面圖形,即面可遞多面體,其所有面都相等。更具體來說,其不僅所有面都全等,且面與面必須能在其對稱性上遞移,也就是說,面必須位於同一個對稱性軌道內。這種凸多面體是能做成公正的骰子的形狀。[8]
十二方偏方面體在施萊夫利符號中可以用{ }⨁{12}來表示,在考克斯特符號中可以用或
來表示,在康威多面體表示法中可以用dA12來表示。
在二十四面體中,有2個是詹森多面體,它們分別為:五角錐球狀屋頂和三側錐正十二面體。
在二十四面體中,有5種拓樸結構明顯不同的卡塔蘭立體[9],分別為三角化八面體、四角化六面體、鳶形二十四面體和五角化二十四面體,其中五角化二十四面體具有2個手性鏡像,因此幾何上只包含了四種不同的卡塔蘭立體。
Remove ads
部分的均勻星形多面體也具有24個面:
Remove ads
參見
參考文獻
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads