Loading AI tools
来自维基百科,自由的百科全书
齒輪(Gear或cogwheel)是輪緣上有齒能連續嚙合傳遞運動和動力的機械零件,齒輪依靠齒的齧合傳遞扭矩。齒輪通過與其它齒狀機械零件(如另一齒輪、齒條、蝸桿)傳動,傳動方式是嚙合傳動,可實現改變轉速與扭矩、改變運動方向和改變運動形式等功能。由於傳動效率高、傳動比準確、功率範圍大等優點,齒輪機構在工業產品中廣泛應用,其設計與製造水準會直接影響到工業產品的品質。
此條目包含過多行話或專業術語,可能需要簡化或提出進一步解釋。 (2015年4月23日) |
齒輪輪齒相互扣住齒輪會帶動另一個齒輪轉動來傳送動力。將兩個齒輪分開,也可以應用鏈條、履帶、皮帶來帶動兩邊的齒輪而傳送動力。齒輪一般由輪齒、齒槽、端面、法面、齒頂圓、齒根圓、基圓和分度圓組成。
兩個齒輪為外嚙合齒輪機構時,轉動的方向會相反,如右圖。 為內嚙合齒輪機構時,轉動的方向會相同。
人類對齒輪的使用源遠流長,亞里士多德可認為是第一個系統論述這一機構的人。而阿基米德不僅對齒輪和蝸輪有詳盡的論述,巴卜斯更記載了阿基米德通過一個蝸輪和九個齒輪的機構,使少數幾個奴隸就將大船錫拉庫西亞推下海中。 古印度的棉核剔除機構(現收藏於柏林博物館)都含有齒輪機構。齒輪的具體發明人無史可考,而早期齒輪並沒有齒形和齒距的規格要求,因此連續轉動的主動輪往往不能使被動輪連續轉動。為瞭解決這一問題,齒形發展為弧形,並通過減小齒距使被動輪獲得連續轉動,這使得齒輪機構的汲水裝置十分普及。
由於鐘錶的出現和普及,人們產生了對齒輪定速傳動的需求。由齒廓齧合基本定律:
和傳動比恆定的條件:
所決定的齒形理論上是無窮多的,Olaf Roemer在1674年曾論述外擺線齒形,而後來工程師也提出了漸開線齒形(齒形為圓形的漸開線)。在1733年,Camus提出了著名的Camus定理:
1765年,Euler闡明了相齧合的齒輪,其齒形曲線的曲率半徑和曲率中心位置的關係。其後Savary完善了這一關係,形成了現在使用的Euler-Savary方程。1873年,Hoppe指出了不同齒數的齒輪在壓力角改變時的漸開線齒形,從而奠定了變位齒輪的基礎。19世紀末,范成切齒法原理的提出使漸開線齒形最終戰勝擺線齒形走上了大規模生產的道路。
1907年,Frank Humphris提出了圓弧齒形。圓弧齒形在使用壽命和減小尺寸方面有一定優勢,因此在現代工業中也逐漸發揮作用。
相對於其他的傳動裝置(例如,摩擦傳動等),擁有定傳動比的齒輪在一些精密機械(例如,需要極其精確傳動比的手錶)中有很強的優勢。在驅動裝置和從動裝置相臨近情況下,齒輪傳動相對與其他傳動方式的優勢在於增加所需零件數目,不足之處在於齒輪的加工製造較昂貴,有潤滑要求。
齒輪的種類繁多,根據齒輪軸相對位置,分為平行軸、相交軸和交錯軸三種類型。平行軸齒輪包括正齒輪、斜齒輪、內齒輪、齒條及斜齒條等。相交軸齒輪有直齒錐齒輪、弧齒錐齒輪、零度齒錐齒輪等。交錯軸齒輪有交錯軸斜齒齒輪、蝸杆蝸輪、准雙曲面齒輪等。以傳動比分類,有定傳動比的圓形齒輪機構(圓柱、圓錐)和變傳動比的非圓齒輪機構(橢圓齒輪)。
以輪軸相對位置分類[1] | |||
---|---|---|---|
相對位置 | 種類 | 說明 | 效率[註 1](%) |
平行軸 | 正齒輪 | 圓柱齒輪,易於加工,使用最廣泛 | 98.0~99.5 |
齒條 | 節圓直徑無限大的正齒輪 | ||
內齒輪 | 輪齒在圓環內側的齒輪 | ||
斜齒齒輪 | 齒線為螺旋線的圓柱齒輪,比正齒輪強度高且運轉平穩,被廣泛使用。傳動時產生軸向推力。 | ||
斜齒齒條 | 與斜齒齒輪相嚙合的條狀齒輪。 | ||
人字齒輪 | 齒線為左旋及右旋的兩個斜齒齒輪組合而成的齒輪。不產生軸向推力。 | ||
相交軸 | 直齒錐齒輪 | 齒線與節錐線的母線一致的錐齒輪,比較容易製造,應用廣泛。 | 98.0~99.0 |
弧齒錐齒輪 | 齒線為曲線,帶有螺旋角。雖然製作難度稍大,但由於強度高,噪音低,也使用廣泛。 | ||
零度齒錐齒輪 | 螺旋角接近零度的曲線齒錐齒輪。 | ||
交錯軸 | 交錯軸斜齒輪 | 只適用於輕負荷情況 | 70.0~95.0 |
圓柱蝸杆蝸輪 | 運轉平靜,傳動比大,具備自鎖功能,以防負荷過大時產生反轉。 | 30.0~90.0 | |
鼓形蝸杆副 | 比圓柱蝸杆副製造困難,但能傳動大負荷。 | - | |
准雙曲面齒輪 | 經偏心加工的弧齒圓錐齒輪,嚙合原理複雜。 | - | |
- | 面齒輪 | 可與正齒輪或斜齒齒輪嚙合的圓盤狀齒輪。在直交及交錯軸間傳動。 | - |
斜齒圓柱齒輪主要參數[2] 螺旋角:為左旋,反之為右旋
齒距:,下標n和t分別表示法向和端面
模數:
齒寬:
分度圓直徑: 齒頂圓直徑:da=m乘以(z+2) 齒根圓直徑:df=m乘以(z-2.5)
中心距: <注>:m為齒輪模數,z為齒數
正確齧合條件:
重合度:
當量齒數:
齒輪的加工方法有鑄造、鍛造、模鍛、冷扎、熱扎、切削加工等,其中以切削加工最爲常見。切削加工可按原理分成仿形法和範成法兩種。[3]
仿形法是在銑牀上採用刀刃形狀與被切齒輪的齒槽兩側齒廓形狀相同的銑刀逐個齒槽進行切質的加工工藝。仿形法生產效率低,加工精度低,適用與對精度要求不高的大模數單件小批量生產。
範成法又稱展成法,是目前齒輪加工中最常用的一種,如插齒、滾齒、磨齒等。範成法是利用齒廓嚙合基本定律來切制齒輪的,假想將一對嚙合的齒輪之一作爲刀具,而另一個作爲齒坯,使兩者仍按原傳動比運動,同時刀具作切削運動,則在齒輪坯上便可加工出與刀具齒輪共軛的齒輪廓。
搓齒加工的成形原理。安裝在滑台上的上下對置的兩把搓齒模具,在經同步齒輪同步後由油壓或伺服電機驅動作相對直線運動,模具被修磨成逐漸切入的齒形,工件由前後頂尖支撐,並可以通過前後頂尖的位移功能方便的調整工件加工部位,上下模具相對運動驅動工件旋轉並逐漸的將工件擠壓成形,經修整後最終退出,花鍵的成形精度及穩定性是由上下搓齒模具的預置剛性距離而獲得,數秒鐘內完成無屑成形。花鍵冷成形實際上時一次齒根材料被逐漸擠壓替換到齒頂的無屑加工過程。搓齒成形工藝及其優點。效率與傳統的切削加工相比,提高30倍以上,工件承載能力比切削件提高40%,粗糙度可達到Ra0.4以下,節約材料9%-15%,經冷成形的齒形的疲勞強度及扭轉強度、耐磨性大幅提高。
許多有色金屬合金,鑄鐵,粉末冶金,甚至塑料用於製造的齒輪。但最常用的是鋼材,因為他們的高強度重量比,低成本。常用塑料的成本和重量是一個問題。設計合理的塑料齒輪可以在許多情況下代替鋼,因為它有許多理想性能,包括耐污垢,低速嚙合,並能夠「跳過」。製造商已經在許多消費項目物品中採用塑料齒輪,如影印機,光存儲設備,錄像機,價格便宜的發電機,消費類音頻設備,伺服電機,和打印機。
在機械設備中,齒輪常用材料有45號調質鋼,40Cr調質鋼等。45號鋼,40Cr在調質後進行表面淬火可以在基本保持齒根彎曲疲勞強度的前提下很大程度地增加齒面疲勞強度,40Cr齒輪採用調質後表面淬火的熱處理工藝可使齒面硬度達到45~55 HRC。20CrMnTi(滲炭後淬火)是比較好的齒輪材料,其強度極限(1200MPa)和屈服極限(1100MPa)是相對較高的,表面硬度可達58~62 HRC,在高速重載並且對機械尺寸和質量有較高要求的設備中的典型材料。
齒輪幾何檢查和驗證,可使用各種方法,如CT掃描、坐標測量機、白光掃描或激光掃描。特別有用的塑料齒輪,CT掃描可以檢查內部幾何和不完善之處,如孔隙率。
在某些機器(如汽車)有必要改變傳動比,以適應任務。有幾種方法實現這個目標。例如:
齒輪是一種常見產業的符號。有些國家的國徽等徽章會出現齒輪。
齒輪形狀的圖標在UI設計中常常用來表達「設置」的含義,是由螺絲刀和扳手演變而來,不過也有用三條橫線來表達「設置」的設計,這種設置的設計因外形類似漢堡也被戲稱為漢堡包[4]。
在傳統機械,例如鐘錶和機械手錶中,齒輪不可或缺,這也是採用齒輪作為設置設計的原因之一。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.