在經典力學 裏,拉普拉斯-龍格-楞次向量 (Laplace–Runge–Lenz vector;簡稱為LRL向量 )主要是用來描述,當一個物體環繞着另外一個物體運動時,軌道 的形狀與取向 。典型的例子是行星的環繞着太陽公轉 。在一個物理系統裏,假若兩個物體以萬有引力 相互作用,則LRL向量必定是一個運動常數 ,不管在軌道的任何位置,計算出來的LRL向量都一樣[ 1] ;也就是說,LRL向量是一個保守量 。更廣義地,在刻卜勒問題 裏,由於兩個物體以連心力 相互作用,而連心力遵守平方反比定律 ,所以,LRL向量是一個保守量[ 2] 。
本條目中,向量 與純量 分別用粗體 與斜體 顯示。例如,位置向量通常用
r
{\displaystyle \mathbf {r} \,\!}
表示;而其大小則用
r
{\displaystyle r\,\!}
來表示。
氫原子 是由兩個帶電粒子構成的。這兩個帶電粒子以遵守庫侖定律 的靜電力 互相作用.靜電力是一個標準的平方反比 連心力 。所以,氫原子 內部的微觀運動是一個刻卜勒問題。在量子力學 的發展初期,薛定諤 還在思索他的薛定諤方程式 的時候,華夫岡·鮑利 使用LRL向量,關鍵性地推導出氫原子的發射光譜 [ 3] 。這結果給予物理學家很大的信心,量子力學理論是正確的。
在經典力學 與量子力學 裏,因為物理系統的某一種對稱性 ,會產生 一個或多個對應的保守值。LRL向量也不例外。可是,它相對應的對稱性很特別;在數學裏,刻卜勒問題等價於一個粒子自由地移動於四維空間的三維球面 [ 4] ;所以,整個問題涉及四維空間的某種旋轉對稱[ 5] 。
拉普拉斯-龍格-楞次向量是因皮埃爾-西蒙·拉普拉斯 、卡爾·龍格 與威廉·楞次 而命名。它又稱為拉普拉斯向量 ,龍格-楞次向量 ,或楞次向量 。有趣的是,LRL向量並不是這三位先生發現的!這向量曾經被重複地發現過好幾次[ 6] 。它等價於天體力學 中無因次 的離心率向量 [ 7] 。發展至今,在物理學裏,有許多各種各樣的LRL向量的推廣定義;牽涉到狹義相對論 ,或電磁場 ,甚至於不同類型的連心力 。
在重要的刻卜勒問題中,LRL向量
A
{\displaystyle \mathbf {A} }
是一個運動常數,時常用來描述天文軌道 ,例如行星的運動。然而,物理學家對它並不熟悉,這很可能是因為與動量與角動量相比,它的物理內涵比較難以被直覺地理解。因此,在過去三個世紀裏,它曾被重複地發現過許多次[ 6] 。1710年,在一個不着名的意大利學刊裏,雅各布·赫爾曼 最先發表了關於LRL向量的論文。在推導一個軌道方程式的過程中,他計算出LRL向量的大小,
A
{\displaystyle A}
是保守的[ 10] ;並且推導出此案例與橢圓 軌道離心率 的關係。稍後,赫爾曼把這結果告訴約翰·白努利 ,他的恩師。白努利又更進一步地推導出LRL向量的方向。這樣,LRL向量得到了它的現代形式[ 11] 。所以,不容質疑地,LRL向量是赫爾曼和白努利共同發現的。
在那個世紀末尾,皮埃爾-西蒙·拉普拉斯 又重新地發現了LRL向量的保守性;稍微不同地,他的導引使用的是分析方法,而不是幾何方法[ 12] 。十九世紀中葉,威廉·哈密頓 推導出全等的離心率向量 [ 7] 。他用離心率向量來證明,在平方反比連心力作用下,速端曲線 顯示出,粒子動量向量的頭部呈圓形移動[ 13] (參閱圖3)。二十世紀初,約西亞·吉布斯 ,應用向量分析 ,推導出同樣的向量[ 14] 。後來,卡爾·龍格 將吉布斯的導引,納入自己所寫的一本廣受歡迎的,關於向量的,德文教科書內,成為其中的一個例題[ 15] 。1924年,威廉·楞次 發表了一篇關於氫原子 的舊量子論 的論文。在這篇論文中,他引用龍格所寫的教科書的例題為參考[ 16] 。1926年,沃爾夫岡·鮑利 用LRL向量與矩陣力學 ,而不是薛定諤方程式 ,來推導氫 原子 的光譜 [ 3] 。這傑作說服了大多數物理學家,使他們覺得量子力學理論是正確的。
角動量
L
{\displaystyle \mathbf {L} }
的三個分量
L
i
{\displaystyle L_{i}}
的帕松括號 是[ 1]
{
L
i
,
L
j
}
=
∑
s
=
1
3
ϵ
i
j
s
L
s
{\displaystyle \{L_{i},L_{j}\}=\sum _{s=1}^{3}\epsilon _{ijs}L_{s}}
;
其中,指標
i
,
j
=
1
,
2
,
3
{\displaystyle i,\ j=1,\ 2,\ 3}
代表直角座標系 的三個座標
(
x
,
y
,
z
)
{\displaystyle (x,\ y,\ z)}
,
ϵ
i
j
s
{\displaystyle \epsilon _{ijs}}
是列維-奇維塔符號 ;在這裏,為了避免與力強度的標記
k
{\displaystyle k}
發生混淆,採用
s
{\displaystyle s}
為連加運算的指標。
定義一個與LRL向量成比例的向量
D
{\displaystyle \mathbf {D} }
為
D
=
A
2
m
|
E
|
{\displaystyle \mathbf {D} ={\frac {\mathbf {A} }{\sqrt {2m\left|E\right|}}}}
。
向量
D
{\displaystyle \mathbf {D} }
與角動量
L
{\displaystyle \mathbf {L} }
的單位相同。
D
{\displaystyle \mathbf {D} }
與
L
{\displaystyle \mathbf {L} }
的帕松括號為[ 27]
{
D
i
,
L
j
}
=
∑
s
=
1
3
ϵ
i
j
s
D
s
{\displaystyle \{D_{i},L_{j}\}=\sum _{s=1}^{3}\epsilon _{ijs}D_{s}}
。
向量
D
{\displaystyle \mathbf {D} }
與自己的帕松括號跟總能量
E
{\displaystyle E}
的正負號有關;也就是說,跟是否總能量
E
{\displaystyle E}
是正值(在平方反比連心力作用下,產生開放的雙曲線 軌道),或負值(在平方反比連心力作用下,產生閉合地橢圓 軌道)有關。假若總能量
E
{\displaystyle E}
是正值,帕松括號是
{
D
i
,
D
j
}
=
−
∑
s
=
1
3
ϵ
i
j
s
L
s
{\displaystyle \{D_{i},D_{j}\}=-\sum _{s=1}^{3}\epsilon _{ijs}L_{s}}
。
反之,假若總能量
E
{\displaystyle E}
是負值,帕松括號是
{
D
i
,
D
j
}
=
∑
s
=
1
3
ϵ
i
j
s
L
s
{\displaystyle \{D_{i},D_{j}\}=\sum _{s=1}^{3}\epsilon _{ijs}L_{s}}
。
由於以下這三個帕松括號方程式,
{
L
i
,
L
j
}
=
∑
s
=
1
3
ϵ
i
j
s
L
s
{\displaystyle \{L_{i},L_{j}\}=\sum _{s=1}^{3}\epsilon _{ijs}L_{s}}
,
{
D
i
,
L
j
}
=
∑
s
=
1
3
ϵ
i
j
s
D
s
{\displaystyle \{D_{i},L_{j}\}=\sum _{s=1}^{3}\epsilon _{ijs}D_{s}}
,
{
D
i
,
D
j
}
=
∑
s
=
1
3
ϵ
i
j
s
L
s
{\displaystyle \{D_{i},D_{j}\}=\sum _{s=1}^{3}\epsilon _{ijs}L_{s}}
,
如果總能量
E
{\displaystyle E}
是負值,則可確定刻卜勒問題的對稱群是四維的旋轉群 SO(4)。
假若總能量
E
{\displaystyle E}
是負值,卡西米爾不變量
C
1
,
C
2
{\displaystyle C_{1},\ C_{2}}
定義為
C
1
=
D
⋅
D
+
L
⋅
L
=
m
k
2
2
|
E
|
{\displaystyle C_{1}=\mathbf {D} \cdot \mathbf {D} +\mathbf {L} \cdot \mathbf {L} ={\frac {mk^{2}}{2\left|E\right|}}}
,
C
2
=
D
⋅
L
=
0
{\displaystyle C_{2}=\mathbf {D} \cdot \mathbf {L} =0}
。
而且,卡西米爾不變量與
D
{\displaystyle \mathbf {D} }
的每一個分量的帕松括號皆為零:
{
C
1
,
D
i
}
=
{
C
2
,
D
i
}
=
0
{\displaystyle \{C_{1},D_{i}\}=\{C_{2},D_{i}\}=0}
。
還有,卡西米爾不變量與
L
{\displaystyle \mathbf {L} }
的每一個分量的帕松括號皆為零:
{
C
1
,
L
i
}
=
{
C
2
,
L
i
}
=
0
{\displaystyle \{C_{1},L_{i}\}=\{C_{2},L_{i}\}=0}
。
既然兩個向量
D
{\displaystyle \mathbf {D} }
與
L
{\displaystyle \mathbf {L} }
永遠是互相垂直的,
C
2
{\displaystyle C_{2}}
明顯地是零。可是,另外一個不變量
C
1
{\displaystyle C_{1}}
只跟質量
m
{\displaystyle m}
、力強度
k
{\displaystyle k}
、總能量
E
{\displaystyle E}
有關。不變量
C
1
{\displaystyle C_{1}}
分別與
D
i
{\displaystyle D_{i}}
,
L
i
{\displaystyle L_{i}}
的帕松括號等於零的導引並不明顯。這不變量
C
1
{\displaystyle C_{1}}
使得只用到量子力學 的正則對易關係 ,就可以推導出類氫原子 的原子能級 ,而不必用到的薛定諤方程式 。
圖6:從LRL向量算符與角動量算符的對易關係,預測出來的氫原子的原子能級。各種實驗都準確地證實這些能級正確無誤。
帕松括號提供了一個簡易的方法來正則量子化 經典系統。兩個量子算符 的對易關係 等於
i
ℏ
{\displaystyle i\hbar }
乘以對應的經典變量[ 28] 。經過這量子化程序,計算刻卜勒問題的卡西米爾算符
C
1
{\displaystyle C_{1}}
的本徵值 ,沃爾夫岡·包利 成功地推導出類氫原子 的原子能級 (參閱圖6),以及其發射光譜 [ 3] 。早在薛定諤方程式 成立之前[ 29] ,包利就研究出這重要的結果!
LRL向量
A
{\displaystyle \mathbf {A} }
的量子算符有一個奧妙之處,那就是動量算符與角動量算符並不對易。動量與角動量的叉積 必須仔細地加以定義[ 27] 。LRL向量的直角座標分量典型地定義為
A
k
≡
−
m
e
α
r
^
k
+
1
2
∑
i
=
1
3
∑
j
=
1
3
ϵ
i
j
k
(
p
i
l
j
+
l
j
p
i
)
{\displaystyle A_{k}\equiv -m_{e}\alpha {\hat {r}}_{k}+{\frac {1}{2}}\sum _{i=1}^{3}\sum _{j=1}^{3}\epsilon _{ijk}\left(p_{i}l_{j}+l_{j}p_{i}\right)}
;
其中,
m
e
{\displaystyle m_{e}}
是電子的質量,常數
α
=
e
2
4
π
ϵ
0
{\displaystyle \alpha ={\frac {e^{2}}{4\pi \epsilon _{0}}}}
,
e
{\displaystyle e}
是單位電荷量 ,
ϵ
0
{\displaystyle \epsilon _{0}}
是真空電容率 。
這定義有一個特性:指標
i
,
j
{\displaystyle i,\ j}
是對稱的,指標
i
,
j
{\displaystyle i,\ j}
的互換不會改變
A
k
{\displaystyle A_{k}}
的數值。表示為向量形式,
A
=
−
m
e
α
r
^
+
1
2
(
p
×
L
−
L
×
p
)
{\displaystyle \mathbf {A} =-m_{e}\alpha {\hat {r}}+{\frac {1}{2}}(\mathbf {p} \times \mathbf {L} -\mathbf {L} \times \mathbf {p} )}
。
那麼,其對應的哈密頓算符 是
H
=
p
2
2
m
e
−
α
r
{\displaystyle H={\frac {\mathbf {p} ^{2}}{2m_{e}}}-{\frac {\alpha }{r}}}
。
與
A
{\displaystyle \mathbf {A} }
向量成正比的
D
{\displaystyle \mathbf {D} }
向量則是
D
=
A
−
2
m
e
H
{\displaystyle \mathbf {D} ={\frac {\mathbf {A} }{\sqrt {-2m_{e}H}}}}
。
請注意,由於哈密頓算符的本徵值是負值,所以公式內的平方根是個實數。
經過一番繁冗的運算,可以求得對易關係:
{
L
i
,
L
j
}
=
i
ℏ
ϵ
i
j
k
L
k
{\displaystyle \{L_{i},\,L_{j}\}=i\hbar \epsilon _{ijk}L_{k}}
、
{
L
i
,
D
j
}
=
i
ℏ
ϵ
i
j
k
D
k
{\displaystyle \{L_{i},\,D_{j}\}=i\hbar \epsilon _{ijk}D_{k}}
、
{
D
i
,
D
j
}
=
i
ℏ
ϵ
i
j
k
L
k
{\displaystyle \{D_{i},\,D_{j}\}=i\hbar \epsilon _{ijk}L_{k}}
、
{
H
,
D
i
}
=
0
{\displaystyle \{H,\,D_{i}\}=0}
。
定義第一階張量 算符 為
J
0
≡
D
3
{\displaystyle J_{0}\equiv D_{3}}
、
J
±
1
≡
∓
1
2
(
D
1
±
i
D
2
)
{\displaystyle J_{\pm 1}\equiv \mp {\frac {1}{\sqrt {2}}}\left(D_{1}\pm iD_{2}\right)}
。
一個歸一化 的第一卡西米爾算符可以同樣地定義為
C
1
≡
D
2
+
L
2
=
m
e
α
2
−
2
H
−
ℏ
2
{\displaystyle C_{1}\equiv \mathbf {D} ^{2}+\mathbf {L} ^{2}={\frac {m_{e}\alpha ^{2}}{-2H}}-\hbar ^{2}}
。
注意到
J
+
1
{\displaystyle J_{+1}}
和
J
−
1
{\displaystyle J_{-1}}
的對易關係是
{
J
+
1
,
J
−
1
}
=
i
{
D
1
,
D
2
}
=
−
ℏ
L
3
{\displaystyle \{J_{+1},J_{-1}\}=i\{D_{1},\,D_{2}\}=-\hbar L_{3}}
。
應用維格納-埃卡特定理 (Wigner-Eckart theorem ),
J
0
|
l
,
m
⟩
=
i
l
2
−
m
2
C
l
|
l
−
1
,
m
⟩
−
i
(
l
+
1
)
2
−
m
2
C
l
+
1
|
l
+
1
,
m
⟩
{\displaystyle J_{0}|l,\,m\rangle =i{\sqrt {l^{2}-m^{2}}}\ {\mathfrak {C}}_{l}|l-1,\,m\rangle -i{\sqrt {(l+1)^{2}-m^{2}}}\ {\mathfrak {C}}_{l+1}|l+1,\,m\rangle }
、
J
+
1
|
l
,
m
⟩
=
−
i
(
l
−
m
)
(
l
−
m
−
1
)
/
2
C
l
|
l
−
1
,
m
+
1
⟩
−
i
(
l
+
m
+
1
)
(
l
+
m
+
2
)
/
2
C
l
+
1
|
l
+
1
,
m
+
1
⟩
{\displaystyle J_{+1}|l,\,m\rangle =-i{\sqrt {(l-m)(l-m-1)/2}}\ {\mathfrak {C}}_{l}|l-1,\,m+1\rangle -i{\sqrt {(l+m+1)(l+m+2)/2}}\ {\mathfrak {C}}_{l+1}|l+1,\,m+1\rangle }
、
J
−
1
|
l
,
m
⟩
=
−
i
(
l
+
m
)
(
l
+
m
−
1
)
/
2
C
l
|
l
−
1
,
m
−
1
⟩
−
i
(
l
−
m
+
1
)
(
l
−
m
+
2
)
/
2
C
l
+
1
|
l
+
1
,
m
−
1
⟩
{\displaystyle J_{-1}|l,\,m\rangle =-i{\sqrt {(l+m)(l+m-1)/2}}\ {\mathfrak {C}}_{l}|l-1,\,m-1\rangle -i{\sqrt {(l-m+1)(l-m+2)/2}}\ {\mathfrak {C}}_{l+1}|l+1,\,m-1\rangle }
;
其中,
|
l
,
m
⟩
{\displaystyle |l,\,m\rangle }
是角量子數 為
l
{\displaystyle l}
、磁量子數 為
l
{\displaystyle l}
的本徵態 ,
C
l
{\displaystyle {\mathfrak {C}}_{l}}
是常數系數。
經過一番運算,
J
+
1
{\displaystyle J_{+1}}
和
J
−
1
{\displaystyle J_{-1}}
的對易算符作用於
|
l
,
m
⟩
{\displaystyle |l,\,m\rangle }
的結果是
{
J
+
1
,
J
−
1
}
|
l
,
m
⟩
=
−
m
[
(
2
l
−
1
)
C
l
2
−
(
2
l
+
3
)
C
l
+
1
2
]
|
l
,
m
⟩
=
−
ℏ
L
3
|
l
,
m
⟩
=
−
m
ℏ
2
{\displaystyle {\begin{aligned}\{J_{+1},\,J_{-1}\}|l,\,m\rangle &=-m[(2l-1){\mathfrak {C}}_{l}^{2}-(2l+3){\mathfrak {C}}_{l+1}^{2}]|l,\,m\rangle \\&=-\hbar L_{3}|l,\,m\rangle =-m\hbar ^{2}\\\end{aligned}}}
。
所以,
C
l
{\displaystyle {\mathfrak {C}}_{l}}
的遞迴關係 是
(
2
l
−
1
)
C
l
2
−
(
2
l
+
3
)
C
l
+
1
2
=
ℏ
2
{\displaystyle (2l-1){\mathfrak {C}}_{l}^{2}-(2l+3){\mathfrak {C}}_{l+1}^{2}=\hbar ^{2}}
。
假設
C
l
2
{\displaystyle {\mathfrak {C}}_{l}^{2}}
是非負值,則為了滿足上述公式,
l
>
0
{\displaystyle l>0}
。再假設
l
{\displaystyle l}
的最大值是
l
m
a
x
{\displaystyle l_{max}}
。由於態向量
|
l
m
a
x
+
1
,
⟩
{\displaystyle |l_{max}+1,\,\ \rangle }
不存在,
C
l
m
a
x
+
1
=
0
{\displaystyle {\mathfrak {C}}_{l_{max}+1}=0}
。因此,
C
l
m
a
x
=
ℏ
2
2
l
m
a
x
−
1
{\displaystyle {\mathfrak {C}}_{l_{max}}={\frac {\hbar ^{2}}{2l_{max}-1}}}
。設定
n
=
l
m
a
x
−
1
{\displaystyle n=l_{max}-1}
,稍加計算,
C
l
{\displaystyle {\mathfrak {C}}_{l}}
的一般方程式為
C
l
=
n
2
−
l
2
4
l
2
−
1
ℏ
{\displaystyle {\mathfrak {C}}_{l}={\sqrt {\frac {n^{2}-l^{2}}{4l^{2}-1}}}\ \hbar }
。
這個
n
{\displaystyle n}
就是跟能級有關的主量子數 。先計算
D
2
{\displaystyle D^{2}}
:
D
2
|
n
,
l
,
m
⟩
=
[
J
+
1
J
−
1
+
J
−
1
J
+
1
+
J
0
2
]
|
n
,
l
,
m
⟩
=
(
n
2
−
l
2
−
l
−
1
)
ℏ
2
|
n
,
l
,
m
⟩
{\displaystyle {\begin{aligned}D^{2}|n,\,l,\,m\rangle &=[J_{+1}J_{-1}+J_{-1}J_{+1}+J_{0}^{2}]|n,\,l,\,m\rangle \\&=(n^{2}-l^{2}-l-1)\hbar ^{2}|n,\,l,\,m\rangle \\\end{aligned}}}
。
所以,第一卡西米爾算符
C
1
{\displaystyle C_{1}}
作用於態向量
|
n
,
l
,
m
⟩
{\displaystyle |n,\,l,\,m\rangle }
可以得到
C
1
|
n
,
l
,
m
⟩
=
(
D
2
+
L
2
)
|
n
,
l
,
m
⟩
=
(
n
2
−
1
)
ℏ
2
|
n
,
l
,
m
⟩
{\displaystyle C_{1}|n,\,l,\,m\rangle =(D^{2}+L^{2})|n,\,l,\,m\rangle =(n^{2}-1)\hbar ^{2}|n,\,l,\,m\rangle }
。
第一卡西米爾算符
C
1
{\displaystyle C_{1}}
的本徵值是
(
n
2
−
1
)
ℏ
2
{\displaystyle (n^{2}-1)\hbar ^{2}}
。重點是,這些本徵值跟量子數
l
{\displaystyle l}
、
m
{\displaystyle m}
無關,這造成了原子能階 的簡併 [ 27] :
E
n
=
−
m
e
α
2
2
ℏ
2
n
2
=
−
m
e
e
4
2
n
2
(
4
π
ϵ
0
)
2
ℏ
2
{\displaystyle E_{n}=-{\frac {m_{e}\alpha ^{2}}{2\hbar ^{2}n^{2}}}=-{\frac {m_{e}e^{4}}{2n^{2}(4\pi \epsilon _{0})^{2}\hbar ^{2}}}}
。
這就是著名的氫原子 玻爾公式 。
圖8:圖7的動量的速端曲線對應於
η
{\displaystyle \eta }
三維單位球 的大圓線 的球極平面投影 。每一個大圓線都與
η
x
{\displaystyle \eta _{x}}
-軸相交,後者垂直於頁面。投影是從北極(
w
{\displaystyle w}
單位向量)到
η
x
{\displaystyle \eta _{x}}
η
x
{\displaystyle \eta _{x}}
-平面,如同這裏的虛黑線表示於品紅色速端曲線。在緯度
α
{\displaystyle \alpha }
的大圓線對應於離心率
e
=
s
i
n
α
{\displaystyle e=sin\ \alpha }
。在這圖裏的大圓線的顏色對應於它們在圖7的速端曲線。
刻卜勒問題 與四維旋轉對稱性SO(4)的關聯可以很容易地觀察出來[ 31] [ 33] [ 34] 。標記四維直角座標 為
(
w
,
x
,
y
,
z
)
{\displaystyle (w,\ x,\ y,\ z)}
;其中,
(
x
,
y
,
z
)
{\displaystyle (x,\ y,\ z)}
代表三維位置向量
r
{\displaystyle \mathbf {r} }
的直角座標。三維動量
p
{\displaystyle \mathbf {p} }
與三維單位球 的四維向量
η
{\displaystyle {\boldsymbol {\eta }}}
的關係為
η
=
p
2
−
p
0
2
p
2
+
p
0
2
w
^
+
2
p
0
p
2
+
p
0
2
p
{\displaystyle {\boldsymbol {\eta }}=\displaystyle {\frac {p^{2}-p_{0}^{2}}{p^{2}+p_{0}^{2}}}\mathbf {\hat {w}} +{\frac {2p_{0}}{p^{2}+p_{0}^{2}}}\mathbf {p} }
;
其中,
w
^
{\displaystyle \mathbf {\hat {w}} }
是新的w-軸的單位向量。
很簡單地,可以核對
η
{\displaystyle {\boldsymbol {\eta }}}
也是一個單位向量:
η
=
η
^
{\displaystyle {\boldsymbol {\eta }}={\hat {\boldsymbol {\eta }}}}
。
從
p
{\displaystyle \mathbf {p} }
至
η
^
{\displaystyle {\hat {\boldsymbol {\eta }}}}
的映射 有一個獨特唯一的逆反;例如,動量
p
{\displaystyle \mathbf {p} }
的x-軸分量是
p
x
=
p
0
η
x
1
−
η
w
{\displaystyle p_{x}=p_{0}{\frac {\eta _{x}}{1-\eta _{w}}}}
。
p
y
{\displaystyle p_{y}}
與
p
z
{\displaystyle p_{z}}
也有類似的公式。換句話說,三維動量向量
p
{\displaystyle \mathbf {p} }
是四維單位向量
η
^
{\displaystyle {\hat {\boldsymbol {\eta }}}}
的球極平面投影 ,其比例因子為
p
0
{\displaystyle p_{0}}
。
選擇一個合適的直角座標,使z-軸與角動量
L
{\displaystyle \mathbf {L} }
同直線,使動量的速端曲線的取向 如同圖7,圓心包含於y-軸。這樣,不失廣義性,就可以觀察到這旋轉對稱性。由於粒子的運動包含於一個平面,
p
{\displaystyle \mathbf {p} }
與
L
{\displaystyle \mathbf {L} }
互相垂直,而且,
p
z
=
η
z
=
0
{\displaystyle p_{z}=\eta _{z}=0}
。因此,只需要專注於三維向量
η
^
=
(
η
w
,
η
x
,
η
y
)
{\displaystyle {\hat {\boldsymbol {\eta }}}=(\eta _{w},\ \eta _{x},\ \eta _{y})}
。圖7速端曲線的阿波羅尼奧斯圓 家族對應於在三維單位球
η
{\displaystyle {\boldsymbol {\eta }}}
的大圓線 家族。每一個大圓線與
η
x
{\displaystyle \eta _{x}}
相交於兩個交點
η
x
=
±
1
{\displaystyle \eta _{x}=\pm 1}
。這兩個交點相對於速端曲線圖的兩點
p
x
=
±
p
0
{\displaystyle p_{x}=\pm p_{0}}
。這兩個交點也是這些大圓線的共同交點。所以,這些大圓線的互相關係是一個環繞着
η
x
{\displaystyle \eta _{x}}
-軸的簡單旋轉(參閱圖8)。以
η
x
{\displaystyle \eta _{x}}
-軸為轉軸,每一個大圓線的位置是從
η
x
η
y
{\displaystyle \eta _{x}\eta _{y}}
-平面旋轉
α
{\displaystyle \alpha }
角。
取任意一個大圓線
η
y
{\displaystyle \eta _{y}}
最大值的一點,其坐標為
(
η
w
,
0
,
η
y
,
0
)
{\displaystyle (\eta _{w},\ 0,\ \eta _{y},\ 0)}
。那麼,
p
x
=
0
{\displaystyle p_{x}=0}
、
p
y
=
p
=
(
A
+
m
k
)
/
L
{\displaystyle p_{y}=p=(A+mk)/L}
、
η
y
=
cos
(
α
)
=
2
p
0
p
y
p
y
2
+
p
0
2
{\displaystyle \eta _{y}=\cos(\alpha )={\frac {2p_{0}p_{y}}{p_{y}^{2}+p_{0}^{2}}}}
。
經過一番運算,代入
p
0
{\displaystyle p_{0}}
的值,可以得到
sin
(
α
)
=
p
y
2
−
p
0
2
p
y
2
+
p
0
2
=
(
A
+
m
k
)
2
−
2
m
|
E
|
L
2
(
A
+
m
k
)
2
+
2
m
|
E
|
L
2
{\displaystyle {\begin{aligned}\sin(\alpha )&={\frac {p_{y}^{2}-p_{0}^{2}}{p_{y}^{2}+p_{0}^{2}}}\\&={\frac {(A+mk)^{2}-2m|E|L^{2}}{(A+mk)^{2}+2m|E|L^{2}}}\\\end{aligned}}}
。
給予一個束縛軌道,能量是負值的:
sin
(
α
)
=
(
A
+
m
k
)
2
+
2
m
E
L
2
(
A
+
m
k
)
2
−
2
m
E
L
2
=
A
m
k
=
e
{\displaystyle {\begin{aligned}\sin(\alpha )&={\frac {(A+mk)^{2}+2mEL^{2}}{(A+mk)^{2}-2mEL^{2}}}\\&={\frac {A}{mk}}=e\\\end{aligned}}}
。
所以,離心率
e
=
sin
(
α
)
{\displaystyle e=\sin(\alpha )}
是緯度
α
{\displaystyle \alpha }
的正弦函數 。
由於圖7的動量的速端曲線對應於
η
{\displaystyle \eta }
三維單位球的大圓線的球極平面投影,而這速端曲線家族的成員都擁有相同的能量。所以,這旋轉的對稱性使所有能量相同的軌道都能夠互相變換。但是,這旋轉正交於通常的三維旋轉,因為它涉及了第四維
η
w
{\displaystyle \eta _{w}}
。高維度的對稱性是刻卜勒問題對應於LRL向量的一個特徵。
採用橢圓柱坐標
χ
,
ψ
,
ϕ
{\displaystyle \chi ,\ \psi ,\ \phi }
來代替四維座標
η
{\displaystyle {\boldsymbol {\eta }}}
,刻卜勒問題有一個精緻的作用量-角度座標 解答[ 35] :
η
w
=
c
n
χ
c
n
ψ
{\displaystyle \eta _{w}=\mathrm {cn} \,\chi \ \mathrm {cn} \,\psi }
,
η
x
=
s
n
χ
d
n
ψ
cos
ϕ
{\displaystyle \eta _{x}=\mathrm {sn} \,\chi \ \mathrm {dn} \,\psi \ \cos \phi }
,
η
y
=
s
n
χ
d
n
ψ
sin
ϕ
{\displaystyle \eta _{y}=\mathrm {sn} \,\chi \ \mathrm {dn} \,\psi \ \sin \phi }
,
η
z
=
d
n
χ
s
n
ψ
{\displaystyle \eta _{z}=\mathrm {dn} \,\chi \ \mathrm {sn} \,\psi }
;
其中,
s
n
,
c
n
,
d
n
{\displaystyle \mathrm {sn} ,\,\mathrm {cn} ,\,\mathrm {dn} }
是雅可比橢圓函數 。
以下幾種導引可以証明,在平方反比連心力下,LRL向量守恆。
LRL向量的保守性與前面所提的旋轉對稱性,兩者之間的關係,可以用諾特定理 來做連結分析。諾特定理也可以用來辨明LRL向量是運動常數 。諾特定理表明[ 37] :在一個物理系統裏,對於廣義坐標
q
i
{\displaystyle q_{i}}
的微小變分
δ
q
i
=
ϵ
g
i
(
q
,
q
˙
,
t
)
{\displaystyle \delta q_{i}=\epsilon g_{i}(\mathbf {q} ,\ \mathbf {\dot {q}} ,\ t)}
,假若,取至微小參數
ϵ
{\displaystyle \epsilon }
的一階,拉格朗日量
L
{\displaystyle {\mathcal {L}}}
的變分
δ
L
{\displaystyle \delta {\mathcal {L}}}
是
δ
L
=
ϵ
d
d
t
G
(
q
,
t
)
{\displaystyle \delta {\mathcal {L}}=\epsilon {\frac {\mathrm {d} }{\mathrm {d} t}}G(\mathbf {q} ,\ t)}
,
則必存在保守量
Γ
{\displaystyle \Gamma }
滿足方程式
Γ
=
−
G
+
∑
i
g
i
(
∂
L
∂
q
˙
i
)
{\displaystyle \Gamma =-G+\sum _{i}g_{i}\left({\frac {\partial {\mathcal {L}}}{\partial {\dot {q}}_{i}}}\right)}
;
其中,
g
i
(
q
,
q
˙
,
t
)
{\displaystyle g_{i}(\mathbf {q} ,\ \mathbf {\dot {q}} ,\ t)}
、
G
(
q
,
t
)
{\displaystyle G(\mathbf {q} ,\ t)}
都是函數。
更具體地,在一個刻卜勒問題裏,試設定坐標
x
i
{\displaystyle x_{i}}
的微小變分為
δ
x
i
=
ϵ
2
[
2
p
i
x
s
−
x
i
p
s
−
(
r
⋅
p
)
δ
i
s
]
{\displaystyle \delta x_{i}={\frac {\epsilon }{2}}\left[2p_{i}x_{s}-x_{i}p_{s}-(\mathbf {r} \cdot \mathbf {p} )\delta _{is}\right]}
;
其中,
i
=
1
,
2
,
3
{\displaystyle i=1,\ 2,\ 3}
,
x
i
{\displaystyle x_{i}}
與
p
i
{\displaystyle p_{i}}
分別為位置
r
{\displaystyle \mathbf {r} }
與動量
p
{\displaystyle \mathbf {p} }
的
i
{\displaystyle i}
-軸分量,
δ
i
s
{\displaystyle \delta _{is}}
是克羅內克爾δ ,
s
{\displaystyle s}
是固定的下標。
由於刻卜勒問題的拉格朗日量是
L
=
∑
i
(
1
2
m
x
˙
i
x
˙
i
)
+
k
r
{\displaystyle {\mathcal {L}}=\sum _{i}\left({\frac {1}{2}}m{\dot {x}}_{i}{\dot {x}}_{i}\right)+{\frac {k}{r}}}
。
其運動方程式 為
m
x
¨
i
+
k
x
i
r
3
=
0
{\displaystyle m{\ddot {x}}_{i}+k{\frac {x_{i}}{r^{3}}}=0}
。
對應於坐標
x
i
{\displaystyle x_{i}}
的變分,速度
x
˙
i
{\displaystyle {\dot {x}}_{i}}
的變分為
δ
x
˙
i
=
ϵ
2
[
2
p
˙
i
x
s
−
x
i
p
˙
s
+
p
i
x
˙
s
−
p
2
m
δ
i
s
−
(
r
⋅
p
˙
)
δ
i
s
]
=
ϵ
2
[
−
k
r
3
x
i
x
s
+
p
i
x
˙
s
−
p
2
m
δ
i
s
+
k
r
δ
i
s
]
{\displaystyle {\begin{aligned}\delta {\dot {x}}_{i}&={\frac {\epsilon }{2}}\left[2{\dot {p}}_{i}x_{s}-x_{i}{\dot {p}}_{s}+p_{i}{\dot {x}}_{s}-{\frac {p^{2}}{m}}\delta _{is}-(\mathbf {r} \cdot {\dot {\mathbf {p} }})\delta _{is}\right]\\&={\frac {\epsilon }{2}}\left[-{\frac {k}{r^{3}}}x_{i}x_{s}+p_{i}{\dot {x}}_{s}-{\frac {p^{2}}{m}}\delta _{is}+{\frac {k}{r}}\delta _{is}\right]\\\end{aligned}}}
。
拉格朗日量取至一階的變分是
δ
L
=
∑
i
(
∂
L
∂
x
i
δ
x
i
+
∂
L
∂
x
˙
i
δ
x
˙
i
)
=
∑
i
(
−
k
x
i
r
3
δ
x
i
+
m
x
˙
i
δ
x
˙
i
)
{\displaystyle {\begin{aligned}\delta {\mathcal {L}}&=\sum _{i}\left({\frac {\partial {\mathcal {L}}}{\partial x_{i}}}\delta x_{i}+{\frac {\partial {\mathcal {L}}}{\partial {\dot {x}}_{i}}}\delta {\dot {x}}_{i}\right)\\&=\sum _{i}\left(-{\frac {kx_{i}}{r^{3}}}\delta x_{i}+m{\dot {x}}_{i}\delta {\dot {x}}_{i}\right)\\\end{aligned}}}
。
代入
δ
x
i
{\displaystyle \delta x_{i}}
和
δ
x
˙
i
{\displaystyle \delta {\dot {x}}_{i}}
的公式,經過一番繁瑣的運算,可以得到
δ
L
=
ϵ
m
k
d
d
t
(
x
s
r
)
{\displaystyle \delta {\mathcal {L}}=\epsilon mk{\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {x_{s}}{r}}\right)}
。
再代入保守量
Γ
{\displaystyle \Gamma }
的公式,則會得到
Γ
=
p
2
x
s
−
p
s
(
r
⋅
p
)
−
m
k
x
s
r
=
[
p
×
L
−
m
k
r
^
]
s
{\displaystyle \Gamma =p^{2}x_{s}-p_{s}\left(\mathbf {r} \cdot \mathbf {p} \right)-{\frac {mkx_{s}}{r}}=\left[\mathbf {p} \times \mathbf {L} -mk{\hat {\mathbf {r} }}\right]_{s}}
;
而這正是LRL向量的
s
{\displaystyle s}
-軸分量
A
s
{\displaystyle A_{s}}
。
鮑利, 沃爾夫岡 , Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik, Zeitschrift für Physik, 1926, 36 : 336–363
Fock, V. , Zur Theorie des Wasserstoffatoms, Zeitschrift für Physik, 1935, 98 : 145–154
巴格曼, 華倫泰 , Zur Theorie des Wasserstoffatoms: Bemerkungen zur gleichnamigen Arbeit von V. Fock, Zeitschrift für Physik, 1936, 99 : 576–582
Goldstein, H., Prehistory of the Runge–Lenz vector, American Journal of Physics, 1975, 43 : 735–738 Goldstein, H., More on the prehistory of the Runge–Lenz vector, American Journal of Physics, 1976, 44 : 1123–1124
哈密頓, 威廉 , Applications of Quaternions to Some Dynamical Questions, Proceedings of the Royal Irish Academy, 1847, 3 : Appendix III
Fradkin, D. M., Existence of the Dynamic Symmetries O4 and SU3 for All Classical Central Potential Problems, Progress of Theoretical Physics, 1967, 37 : 798–812
Yoshida, T, Two methods of generalisation of the Laplace–Runge–Lenz vector, European Journal of Physics, 1987, 8 : 258–259
赫爾曼, 雅各布 , Unknown title, Giornale de Letterati D'Italia, 1710, 2 : 447–467赫爾曼, 雅各布 , Extrait d'une lettre de M. Herman à M. Bernoulli datée de Padoüe le 12. Juillet 1710, Histoire de l'academie royale des sciences (Paris), 1710, 1732 : 519–521
白努利, 約翰 , Extrait de la Réponse de M. Bernoulli à M. Herman datée de Basle le 7. Octobre 1710, Histoire de l'academie royale des sciences (Paris), 1710, 1732 : 521–544
拉普拉斯, 皮埃爾-西蒙 . Traité de mécanique celeste. 1799: Tome I, Premiere Partie, Livre II, pp.165ff.
哈密頓, 威廉 , The hodograph or a new method of expressing in symbolic language the Newtonian law of attraction, Proceedings of the Royal Irish Academy, 1847, 3 : 344–353
吉布斯, 約西亞 ; Wilson E. B. Vector Analysis. New York: Scribners. 1901: p. 135.
龍格, 卡爾 . Vektoranalysis. Leipzig: Hirzel. 1919: Volume I.
楞次, 威爾漢 , Über den Bewegungsverlauf und Quantenzustände der gestörten Keplerbewegung, Zeitschrift für Physik, 1924, 24 : 197–207
Taff, L. G. Celestial Mechanics: A Computational Guide for the Practitioner. New York: John Wiley and Sons. 1985: 42–43.
Evans, N. W., Superintegrability in classical mechanics, Physical Review A, 1990, 41 : 5666–5676
索末菲, 阿諾 . Atomic Structure and Spectral Lines. London: Methuen. 1923: 118.
Evans, N. W., Group theory of the Smorodinsky–Winternitz system, Journal of Mathematical Physics, 1991, 32 : 3369–3375
愛因斯坦, 阿爾伯特 , Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1915, 1915 : 831–839
Le Verrier , Lettre de M. Le Verrier à M. Faye sur la Théorie de Mercure et sur le Mouvement du Périhélie de cette Planète, Comptes Rendus de l'Academie de Sciences (Paris), 1859, 49 : 379–383
Will, C. M. General Relativity, an Einstein Century Survey SW Hawking and W Israel, eds. Cambridge: Cambridge University Press. 1979: Chapter 2.
派斯, 亞伯拉罕 . Subtle is the Lord: The Science and the Life of Albert Einstein. Oxford University Press. 1982.
Roseveare, N. T. Mercury's Perihelion from Le Verrier to Einstein. Oxford University Press. 1982.
狄拉克, 保羅 . Principles of Quantum Mechanics, 4th revised edition. Oxford University Press. 1958.
薛定諤, 埃爾文 , Quantisierung als Eigenwertproblem, Annalen der Physik, 1926, 384 : 361–376
Prince, GE; Eliezer CJ, On the Lie symmetries of the classical Kepler problem, Journal of Physics A: Mathematical and General, 1981, 14 : 587–596
Bander, M; Itzykson C, Group Theory and the Hydrogen Atom (I), Reviews of Modern Physics, 1966, 38 : 330–345
Bander, M; Itzykson C, Group Theory and the Hydrogen Atom (II), Reviews of Modern Physics, 1966, 38 : 346–358
Rogers, HH, Symmetry transformations of the classical Kepler problem, Journal of Mathematical Physics, 1973, 14 : 1125–1129
Lakshmanan, M; Hasegawa H, On the canonical equivalence of the Kepler problem in coordinate and momentum spaces, Journal of Physics A: L889–L893
Dulock, VA; McIntosh HV, On the Degeneracy of the Kepler Problem, Pacific Journal of Mathematics, 1966, 19 : 39–55
Lévy-Leblond, JM, Conservation Laws for Gauge-Invariant Lagrangians in Classical Mechanics, American Journal of Physics, 1971, 39 : 502–506
Gonzalez-Gascon, F, Notes on the symmetries of systems of differential equations, Journal of Mathematical Physics, 1977, 18 : 1763–1767
李, 索菲斯 . Vorlesungen über Differentialgleichungen. Leipzig: Teubner. 1891.
Ince, EL. Ordinary Differential Equations. New York: Dover (1956 reprint). 1926: 93–113.
Redmond, P. J., Generalization of the Runge–Lenz Vector in the Presence of an Electric Field, Physical Review, 1964, 133 : B1352–B1353
Leach, P.G.L.; G.P. Flessas, Generalisations of the Laplace–Runge–Lenz vector, J. Nonlinear Math. Phys., 2003, 10 : 340–423,