Remove ads
與三角函數類似的函數 来自维基百科,自由的百科全书
在數學中,雙曲函數是一類與常見的三角函數(也叫圓函數)類似的函數。最基本的雙曲函數是雙曲正弦函數和雙曲餘弦函數,從它們可以導出雙曲正切函數等,其推導也類似於三角函數的推導。雙曲函數的反函數稱為反雙曲函數。
由於已知的技術原因,圖表暫時不可用。帶來不便,我們深表歉意。 |
雙曲函數的定義域是實數,其自變量的值叫做雙曲角。雙曲函數出現於某些重要的線性微分方程的解中,譬如說定義懸鏈線和拉普拉斯方程。
最簡單的幾種雙曲函數為[1]:
如同當遍歷實數集時,點(, )的軌跡是一個圓一樣,當遍歷實數集時,點(, )的軌跡是單位雙曲線的右半邊。這是因為有以下的恆等式:
在18世紀,約翰·海因里希·蘭伯特引入雙曲函數[2],並計算了雙曲幾何中雙曲三角形的面積[3]。自然對數函數是在直角雙曲線下定義的,可構造雙曲線直角三角形,底邊在線上,一個頂點是原點,另一個頂點在雙曲線。這裏以自然對數即雙曲角作為參數的函數,是自然對數的逆函數指數函數,即要形成指定雙曲角,在漸近線即x或y軸上需要有的或的值。顯見這裏的底邊是,垂線是。
單位雙曲線中雙曲線扇形的面積是對應直角雙曲線下雙曲角的。
所以雙曲函數和可以通過圓函數來定義。這些恆等式不是從圓或旋轉得來的,它們應當以無窮級數的方式來理解。特別是,可以將指數函數表達為由偶次項和奇次項組成,前者形成函數,後者形成了函數。函數的無窮級數可從得出,通過把它變為交錯級數,而函數可來自將變為交錯級數。上面的恆等式使用虛數,從三角函數的級數的項中去掉交錯因子,來恢復為指數函數的那兩部份級數。
雙曲函數可以通過虛數圓角定義為:
奧古斯都·德·摩根在其1849年出版的教科書《Trigonometry and Double Algebra》中將圓三角學擴展到了雙曲線[4]。威廉·金頓·克利福德在1878年使用雙曲角來參數化單位雙曲線。
給定相同的角α,在雙曲線上計算雙曲角的量值(雙曲扇形面積除以半徑)得到雙曲函數,角得到三角函數。在單位圓和單位雙曲線上,雙曲函數與三角函數有如下的關係:
與雙曲函數有關的恆等式如下:
由於雙曲函數和三角函數之間的對應關係,雙曲函數的恆等式和三角函數的恆等式之間也是一一對應的。對於一個已知的三角函數公式,只需要將其中的三角函數轉成相應的雙曲函數,並將含有有兩個的積的項(包括)轉換正負號,就可得到相應的雙曲函數恆等式[5]。如
雙曲函數也可以以泰勒級數展開:
其中
下列的擴展在整個複數平面上成立:
從雙曲正弦和餘弦的定義,可以得出如下恆等式:
和
因為指數函數可以定義為任何複數參數,也可以擴展雙曲函數的定義為複數參數。函數和是全純函數。
指數函數與三角函數的關係由歐拉公式給出:
所以:
因此,雙曲函數是關於虛部有週期的,週期為(對雙曲正切和餘切是)。
反雙曲函數是雙曲函數的反函數。它們的定義為:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.