圓周率是一個數學常數,通常以字母π表示。在歐幾里得幾何中,它表示任何一個周長直徑之比。π是一個無理數,因此它的小數展開式永遠不會循環或窮盡。π也是一個超越數,即它不是任何整係數代數方程的根。在十進制中,圓周率的近似值約為:

Thumb
當圓的直徑為1時,其周長便是π

數學家威廉·瓊斯首先在1707年從希臘文「周長」(περίμετρος)一詞中提取出字母π,用來表示圓周率。隨後萊昂哈德·歐拉於1737年將其推廣[1]。π是數學物理學中最重要的常數之一,大量的科學工程學公式中都用到了π。縱觀數學歷史,曾經有大量的數學家為精確計算π,或了解其本質做出了貢獻。圓周率本身的魅力也因此延伸到了非數學的文化領域中。

基本特徵

定義

Thumb
周長=π× 直徑

歐幾里得幾何中,圓周率被定義為一個周長直徑的比值[2]。這是一個與直徑大小無關的常數,即對於任何一個圓,總有下述成立:

同樣,圓周率也可以定義為一個圓的面積半徑平方的比值,即:

上述定義僅限於歐幾里得幾何。因為在非歐幾何中,圓周率可能會大於或小於通常值。例如,在轉盤圓周率佯謬中,得到了周長與直徑之比大於π的結果[3]。由於這些問題,數學家有時更願意使用脫離幾何學的定義方式。例如在分析學里,π可以嚴格地定義為滿足sin(x) = 0的最小正實數x[4]。這一定義與上述方式是等價的。

無理性與超越性

Thumb
化圓為方:求作一正方形,使其面積等於一給定的面積。1882年林德曼證明了此命題無法用尺規作圖完成。

π是一個無理數,即它不能被寫成兩個整數之比。這一性質最早由九世紀阿拉伯數學家花剌子密提出[5]。這一命題的證明由約翰·海因里希·蘭伯特在1768年完成[6]。到了20世紀,數學家們找到了更多只需積分知識即可完成的證明。其中伊萬·尼雲提出的一個證法廣為流傳[7][8]

π也是一個超越數,即它不是任何一個整係數代數方程的根[9]。它的證明由德國數學家費迪南·馮·林德曼於1882年給出。由此可以推出一個重要的結果:π不是規矩數。這意味着使用尺規作圖完成化圓為方的過程是不可能的。此後,德國數學家果爾丹在1893年將這一證明化簡為了初等證明[10]

小數表示

歷史

[11][12][13]

各式各樣的
基本

Thumb

延伸
其他

圓周率
自然對數的底
虛數單位
無限大

相關內容

  • The Feynman point, a sequence of six 9s that appears at the 762nd through 767th decimal places of π
  • Indiana Pi Bill
  • List of topics related to π
  • Mathematical constants: e and φ
  • Pi Day
  • Proof that 22/7 exceeds π
  • Software for calculating π on personal computers

參考文獻

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.