此條目翻譯品質不佳。 |
2003年,由俄羅斯與美國聯合組成的研究團隊在俄羅斯杜布納聯合原子核研究所(Joint Institute for Nuclear Research, JINR)首次探測到113號元素;2004年日本埼玉縣和光市的理化學研究所(理研)科學家團隊也有同樣發現。隨後幾年包含美國、德國、瑞典和中國工作的獨立科學家團隊,以及俄羅斯和日本的團隊都認為他們是最初的發現者。2015年,IUPAC / IUPAP聯合工作組確認了該元素,並將該元素的發現和命名權分配給理研,因為他們判斷理研已經證明其比JINR團隊更早觀察到113元素。理研團隊在2016年提出了nihonium的名稱,並於同年獲得批准,而這個名字源自「日本」的日語讀音(漢字:日本/平假名:にほん/羅馬字:nihon)。
目前科學家對鉨元素所知甚少,因為它產量稀少,且在合成出的幾秒鐘內就會衰變成其他同位素,目前已知壽命最長的鉨同位素半衰期為9.5秒。雖然鉨同位素壽命短暫,但仍比預計的要長得多。包括鉨在內的一些超重核素的壽命異常地長,原因可由穩定島理論解釋:隨著中子數的增加,越重的鉨同位素越接近理論上的「穩定島」,半衰期也從幾毫秒漸增到幾秒。
根據計算,鉨應該具有與其同族元素硼、鋁、鎵、銦和鉈相似的性質。除硼之外的所有13族元素都是後過渡金屬(貧金屬),而科學家預期鉨也是後過渡金屬。但計算也顯示出鉨和其同族元素有幾個主要差異;例如鉨在+1氧化態下應比+3態更穩定,就像鉈一樣,但在+1態,鉨應該表現得更像銀和砈,而不是鉈。2017年的初步實驗表明,鉨元素的揮發性並不大,其大部分化學性質目前尚未明瞭。
概論
超重元素的合成
超重元素[a]的原子核是在兩個不同大小的原子核[b]的聚變中產生的。粗略地說,兩個原子核的質量之差越大,兩者就越有可能發生反應。[10]由較重原子核組成的物質會作為靶子,被較輕原子核的粒子束轟擊。兩個原子核只能在距離足夠近的時候,才能聚變成一個原子核。原子核都帶正電荷,會因為靜電排斥力而相互排斥,所以只有兩個原子核的距離足夠短時,強核力才能克服這個排斥力並發生聚變。粒子束因此被粒子加速器大大加速,以使這種排斥力與粒子束的速度相比變得微不足道。[11]施加到粒子束上以加速它們的能量可以使它們的速度達到光速的十分之一。但是,如果施加太多能量,粒子束可能會分崩離析。[11]
不過,只是靠得足夠近不足以使兩個原子核聚變:當兩個原子核逼近彼此時,它們通常會融為一體約10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成單一的原子核。[11][12]這是因為在嘗試形成單個原子核的過程中,靜電排斥力會撕開正在形成的原子核。[11]每一對目標和粒子束的特徵在於其截面,即兩個原子核彼此接近時發生聚變的概率。[c]這種聚變是量子效應的結果,其中原子核可通過量子穿隧效應克服靜電排斥力。如果兩個原子核可以在該階段之後保持靠近,則多個核相互作用會導致能量的重新分配和平衡。[11]
兩個原子核聚變產生的原子核處於非常不穩定,[11]被稱為複合原子核的激發態。[14]複合原子核為了達到更穩定的狀態,可能會直接裂變,[15]或是放出一些中子來帶走激發能量。如果激發能量太小,無法放出中子,複合原子核就會放出γ射線來帶走激發能量。這個過程會在原子核碰撞後的10−16秒發生,並創造出更穩定的原子核。[15]原子核只有在10−14秒內不衰變,IUPAC/IUPAP聯合工作小組才會認為它是化學元素。這個值大約是原子核得到它的外層電子,顯示其化學性質所需的時間。[16][d]
衰變和探測
粒子束穿過目標後,會到達下一個腔室——分離室。如果反應產生了新的原子核,它就會存在於這個粒子束中。[18]在分離室中,新的原子核會從其它核素(原本的粒子束和其它反應產物)中分離,[e]到達半導體探測器後停止。這時標記撞擊探測器的確切位置、能量和到達時間。[18]這個轉移需要10−6秒的時間,因此原子核需要存在這麼長的時間才能被檢測到。[21]若衰變發生,衰變的原子核被再次記錄,並測量位置、衰變能量和衰變時間。[18]
原子核的穩定性源自於強核力,但強核力的作用距離很短,隨着原子核越來越大,強核力對最外層的核子(質子和中子)的影響減弱。同時,原子核會被質子之間,範圍不受限制的靜電排斥力撕裂。[22]強核力提供的核結合能以線性增長,而靜電排斥力則以原子序數的平方增長。後者增長更快,對重元素和超重元素而言變得越來越重要。[23][24]超重元素理論預測[25]及實際觀測到[26]的主要衰變方式,即α衰變和自發裂變都是這種排斥引起的。[f]幾乎所有會α衰變的核素都有超過210個核子,[28]而主要通過自發裂變衰變的最輕核素有238個核子。[26]有限位勢壘在這兩種衰變方式中抑制了原子核衰變,但原子核可以隧穿這個勢壘,發生衰變。[23][24]
放射性衰變中常產生α粒子是因為α粒子中的核子平均質量足夠小,足以使α粒子有多餘能量離開原子核。[30]自發裂變則是由靜電排斥力將原子核撕裂而致,會產生各種不同的產物。[24]隨着原子序數增加,自發裂變迅速變得重要:自發裂變的部分半衰期從92號元素鈾到102號元素鍩下降了23個數量級,[31]從90號元素釷到100號元素鐨下降了30個數量級。[32]早期的液滴模型因此表明有約280個核子的原子核的裂變勢壘會消失,因此自發裂變會立即發生。[24][33]之後的核殼層模型表明有大約300個核子的原子核將形成一個穩定島,其中的原子核不易發生自發裂變,而是會發生半衰期更長的α衰變。[24][33]隨後的發現表明預測存在的穩定島可能比原先預期的更遠,還發現長壽命錒系元素和穩定島之間的原子核發生變形,獲得額外的穩定性。[34]對較輕的超重核素[35]以及那些更接近穩定島的核素[31]的實驗發現它們比先前預期的更難發生自發裂變,表明核殼層效應變得重要。[g]
α衰變由發射出去的α粒子記錄,在原子核衰變之前就能確定衰變產物。如果α衰變或連續的α衰變產生了已知的原子核,則可以很容易地確定反應的原始產物。[h]因為連續的α衰變都會在同一個地方發生,所以通過確定衰變發生的位置,可以確定衰變彼此相關。[18]已知的原子核可以通過它經歷的衰變的特定特徵來識別,例如衰變能量(或更具體地說,發射粒子的動能)。[i]然而,自發裂變會產生各種分裂產物,因此無法從其分裂產物確定原始核素。[j]
嘗試合成超重元素的物理學家可以獲得的信息是探測器收集到的信息,即原子核到達探測器的位置、能量、時間以及它衰變的信息。他們分析這些數據並試圖得出結論,確認它確實是由新元素引起的。如果提供的數據不足以得出創造出來的核素確實是新元素的結論,且對觀察到的現象沒有其它解釋,就可能在解釋數據時出現錯誤。[k]歷史
2003年8月,科學家在鏌的衰變產物中首次探測到鉨。2004年2月1日,一個由俄羅斯杜布納聯合核研究所和美國勞倫斯利福摩爾國家實驗室聯合組成的研究小組發表了這一項發現。[46][47]
2004年7月23日,日本理化學研究所(理研;RIKEN)的森田浩介使用209Bi和70Zn之間的冷融合反應,探測到了一個278Nh原子。他們在2004年9月28日發表這項發現。[48]
實驗結果在2004年得到證實,中國近代物理研究所探測到的266Bh衰變特性和日本理研所探測到的衰變活動特性相同(詳見𨨏)。
理研小組在2005年4月2日又合成了一個鉨原子,衰變數據與第一次的不同,但這可能是因為產生了穩定的同核異構體。
美俄合作小組對衰變產物268Db進行化學實驗,進一步證實了鉨的發現。鉨的α衰變鏈半衰期與實驗數據相符。[49]
由於日本科學家未充分觀察該元素轉化為其他元素的情形,因此這一發現因證據不足而未被承認。日本理研於2012年9月26日第三次宣布合成出了113號元素,方法是利用加速器使鋅和鉍原子相互碰撞。[50]
杜布納小組的Dmitriev和理研小組的森田浩介分別對命名Uut進行了提議。國際純粹與應用化學聯合會(IUPAC)及國際純粹與應用物理聯合會(IUPAP)的聯合工作小組將決定哪一方有權進行命名。2011年,IUPAC審核了兩方曾進行的實驗,認為實驗並未符合「發現元素」的標準。[52]
2015年12月31日,理研取得本元素的命名權,並被IUPAC認為Uut符合「發現元素」標準,這也是首次由亞洲國家取得新元素命名權。本元素原本被預計命名為Japonium[53],符號Jp,跟日本的縮寫一樣,但此命名未被使用,這是因為這個名稱會涉及Jap,一個貶低日本人的詞語,所以日本人拒絕使用此名稱。
以下為曾經提議使用的名稱:
2016年6月8日,IUPAC宣佈計劃根據理化學研究所的建議將113號元素命名為「Nihonium」,符號為Nh。[57]此名稱於2016年11月28日正式獲得認可。[58]
此外,日本化學家小川正孝曾於1908年宣佈發現了第43號元素,並將其命名為「Nipponium」(Np),以紀念其本國日本(Nippon)。然而,後來的分析則指出,他所發現的是和43號元素同族的75號元素(即錸),而43號元素鎝則在1936年被人工合成出。[59]
此元素剛開始被譯為鈤,因為此元素的命名來源自日本的國家名稱,但是因為此名稱違反以西方讀音作為元素中文名稱的習慣,因此並沒有被採用,而由於鈮這名稱已經給了41號元素,所以有人提議以第二個音節來命名,命名為鋐(類似鈧元素的情況),但是由於中文名稱大多數都使用第一個音節,所以這個提議也沒有被採用。2017年1月15日,中華人民共和國全國科學技術名詞審定委員會聯合國家語言文字工作委員會組織化學、物理學、語言學界專家召開了113號、115號、117號、118號元素中文定名會,通過了將此元素命名為「鉨」(讀音同「你」)的方案。[60][61]
2017年4月5日,中華民國國家教育研究院的化學名詞審譯委員會審譯修正通過之「化學元素一覽表」將此元素命名為「
「鉨」字已收錄在統一碼漢字基本區中,碼位為U+9268。該字有「絡絲」、「絡絲之具」兩意,並兼為繁體字「
同位素
同位素 | 半衰期[l] | 衰變方式 | 發現年份 | 發現方法 | |
---|---|---|---|---|---|
數值 | 來源 | ||||
278Nh | 2.3 ms | [26] | α | 2004年 | 209Bi(70Zn,n) |
282Nh | 61 ms | [64] | α | 2006年 | 237Np(48Ca,3n) |
283Nh | 123 ms | [64] | α | 2004年 | 287Mc(—,α) |
284Nh | 0.90 s | [64] | α, EC | 2004年 | 288Mc(—,α) |
285Nh | 2.1 s | [64] | α, SF | 2010年 | 289Mc(—,α) |
286Nh | 9.5 s | [65] | α | 2010年 | 290Mc(—,α) |
287Nh[m] | 5.5 s | [66] | α | 1999年 | 287Fl(e−,νe) |
290Nh[m] | 2 s | [67] | α | 1998年 | 290Fl(e−,νe) |
目前已知的鉨同位素共有6個,質量數分別為278和282-286,全部都具有極高的放射性,半衰期極短,非常不穩定,且較重的同位素大多比較輕的同位素來的穩定,因為它們更接近穩定島的中心,其中最長壽的同位素為鉨-286,半衰期約8秒,也是目前發現最重的鉨同位素。其他半衰期超過一秒的同位素有鉨-285和未經證實的鉨-287及鉨-290。目前發現的鉨同位素都會發生α衰變形成錀的同位素[68],但有跡象表明鉨-284也能通過電子捕獲衰變成鎶-284。[69]
化學屬性
鉨預計將為7p系第1個元素,並是元素週期表中13 (IIIA)族最重的成員,位於鉈之下。這一族的氧化態為+III,但由於相對論,7s軌域的穩定性會造成惰性電子對效應,因此它只形成穩定的+I態,Nh+/Nh的標準電極電勢更高,預測達到 0.6 V,就如惰性的金屬,難以形成穩定的化學鍵,與銠和釕一樣不易發生反應[70]。
鉨的化學特性能從鉈的特性中推算出來。因此,它應該會形成Nh2O、NhF、NhCl、NhBr和NhI。但如果能達到+III態,鉨則應只能形成Nh2O3和NhF3。7p軌域的自旋-軌道分離可能會使−1態也較穩定,類似於Au(−1)(金化物)。
參見
注釋
參考資料
參考書目
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.