Loading AI tools
来自维基百科,自由的百科全书
在數學的拓撲學中,開映射是兩個拓撲空間之間的映射,使得任何開集的像都是開集;閉映射是兩個拓撲空間之間的映射,使得任何閉集的像都是閉集。所以f: X → Y是開映射(閉映射),如果X中的開集(閉集)在f下的像都為Y的開集(閉集)。
開映射和閉映射的定義中,並不要求映射連續。與之比較,映射f: X → Y為連續映射的定義,是所有Y的開集的原像為X的開集,也可等價地定義為所有Y的閉集的原像為X的閉集。雖然開映射和閉映射的定義,似較連續映射為自然,但在拓撲學中其重要性不及連續映射。
一個映射f: X → Y是開映射若且唯若對X中每一點x及其任何(任意小的)鄰域U,都存在f(x)的鄰域V使得V ⊂ f(U)。因此若f將X的某個拓撲基中的元素都映射到Y的開集,則f是開映射。
開映射和閉映射的定義,可用內部算子和閉包算子表達如下:設f: X → Y是映射。
兩個開映射的積是開映射,但兩個閉映射的積未必是閉映射。(例如取前述的投射p1: R2 → R,視之為兩個映射f和g的積,其中f是x軸上的恆等函數,g是從y軸到只包含點0的集合{0}的函數。f和g為閉映射,但p1不是。)
一個雙射是開的若且唯若其為閉的。一個連續的雙射,其逆映射是雙射的既開且閉映射,反之亦然。
一個滿射的開映射不一定是閉映射,同樣一個滿射的閉映射也不一定是開映射,
設f是連續映射,且是開的或閉的,那麼
有些條件能協助辨別映射是否開或閉。以下列出一些這一類的定理。
閉映射引理指,從緊緻集X到豪斯多夫空間Y的連續映射f: X → Y都是閉且逆緊(緊緻集的原像都為緊緻)。這結果的一個變化指,局部緊緻豪斯多夫空間之間的一個連續映射若為逆緊,則這映射是閉映射。
泛函分析中的開映射定理指,巴拿赫空間之間的連續線性算子若是滿射,則為開映射。
複分析中的開映射定理指,在複平面的連通開子集上定義的非常數全純函數是開映射。
區域不變性定理指,兩個n維拓撲流形間的局部單射且連續的映射都是開映射。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.