數學中,拓撲流形( topological manifold )是一個「局部上看起來像是 」的拓樸空間,是微分幾何的主要研究對象。所有其他類型的流形( manifolds )都是帶有額結構的拓撲流形。例如可微流形是一個帶有額外的「微分結構」的拓撲流形;而光滑流形則要求這個「微分結構」要是無窮可微的。

形式定義

一個 拓撲流形(或簡稱流形)是一個拓撲空間 ,滿足以下性質[1]

  1. 豪斯多夫空間
  2. 第二可數空間
  3. 對於每個 中的點,找的到一個該點的鄰域 ,使得 同胚

範例

  • 連續函數的圖形。
  • 維的球體。
  • 射影空間
  • 環面

範例

n {\displaystyle n} 維流形

Projective manifolds

  • Projective spaces over the reals, complexes, or quaternions are compact manifolds.
    • Real projective space RPn is a n-dimensional manifold.
    • Complex projective space CPn is a 2n-dimensional manifold.
    • Quaternionic projective space HPn is a 4n-dimensional manifold.
  • Manifolds related to projective space include Grassmannians, flag manifolds, and Stiefel manifolds.

Other manifolds

  • Differentiable manifolds are a class of topological manifolds equipped with a differential structure.
  • Lens spaces are a class of differentiable manifolds that are quotients of odd-dimensional spheres.
  • Lie groups are a class of differentiable manifolds equipped with a compatible group structure.
  • The E8 manifold is a topological manifold which cannot be given a differentiable structure.

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.