n 維空間中一個對象X的幾何中心或形心是將X分成矩相等的兩部分的所有超平面的交點。非正式地說,它是X中所有點的平均。如果一個物件質量分佈平均,形心便是重心。
如果一個對象具有一致的密度,或者其形狀和密度具有某種對稱性足以確定幾何中心,那麼它的幾何中心和質量中心重合,該條件是充分但不是必要的。
有限個點總存在幾何中心,可以通過計算這些點的每個坐標分量的算術平均值得到。這個中心是空間中一點到這有限個點距離的平方和的唯一最小值點。點集的幾何中心在仿射變換下保持不變。
一個凸對象的幾何中心總在其內部。一個非凸對象的幾何中心可能在外部,比如一個環或碗的幾何中心不在內部。
形心是三角形的幾何中心,是指三角形的三條中線(頂點和對邊的中點的連線)交點[1]。
用塞瓦定理逆定理可以直接證出:
因此三線共點。[2]
中心分每條中線比為2:1,這就是說距一邊的距離是該邊相對頂點距該邊的1/3。如右圖所示:
如果三角形是由均勻材料做成的薄片,那麼幾何中心也就是質量中心。它的笛卡爾坐標是三個頂點的坐標算術平均值。也就是說,如果三頂點位於,,和,那麼幾何中心位於:
設三角形ABC的中線AD,BE和CF交於三角形的中心G,延長AD至點O使得
那麼三角形AGE和AOC 相似(公共角A,AO = 2 AG,AC = 2 AE),所以OC平行於GE。但是GE是BG的延長,所以OC平行於BG。同樣的,OB平行於CG。
從而圖形GBOC是一個平行四邊形。因為平行四邊形對角線互相平分,對角線GO和BC的交點使得GD = DO,這樣
所以,,或,這對任何中線都成立。
- 三角形的重心與三頂點連線,所形成的三個三角形面積相等。
- 頂點到重心的距離是中線的。
- 外心、重心、九點圓圓心、垂心四點依次序共線,其中,此線稱為歐拉線。
- 內心、重心、斯俾克心、奈格爾點四點依次序共線,其中,此線稱為奈格爾線。
- 三角形的重心同時也是中點三角形的重心。
- 在直角座標系中,若頂點的座標分別為、、,則重心的座標為:
一個由N個頂點(xi , yi)確定的不自交閉多邊形的中心能如下計算:[3]
記號( xN , yN)與頂點( x0 , y0)相同。多邊形的面積為:
多邊形的中心由下式給出:
一個平面圖形的中心的橫坐標(x軸)由積分
- 給出。
這裡f(x)是對象位於在橫坐標x點y軸上的長度,是在x圖形的測度。這個公式能由區域關於y-軸的第一矩得出。
這個過程等價於取加權平均。假設y-軸表示頻率,x-軸表示欲求平均值的變量,那麼沿着x-軸的中心即 。從而中心可以想象成表示特定形狀的許多無限小元的加權平均。
對任意維數n,由相同的公式得出中一個對象的中心第一個坐標,假設f (x)是對象在坐標x的截面(也就是說,對象中第一個坐標為x的所有點的集合)的(n-1)-維測度。
注意到分母恰是對象的n- 維測度。特別的,在f為正規時,即分母為1,中心也稱為f的平均。
當對象的測度為0或者積分發散,這個公式無效。
圓錐或稜錐的中心位於連接頂點和底的中心的線段上,分比為3:1。
如果中心確定了,那麼中心是所有它對稱群的不動點。從而對稱能全部或部分確定中心,取決於對稱的種類。另外可以知道,如果一個對象具有傳遞對稱性,那麼它的中心是不確定的或不在內部,因為一個傳遞變換群沒有不動點。
地理學中,地球表面一個區域的幾何中心也稱為地理中心。