Loading AI tools
研究物质的性质、组成、结构、变化,以及物质变化规律的科学 来自维基百科,自由的百科全书
化学是在原子、分子层次上研究物质的组成、结构、性质以及变化规律的科学。化学研究的对象涉及物质之间的相互关系,或物质和能量之间的关联。传统的化学常常都是关于两种或以上的物质之间的接触和其后的变化,即化学反应[1],又或者是一种物质变成另一种物质的过程。这些变化有时会需要使用电磁波,当中电磁波负责激发化学作用。不过有时化学并不一定要关于物质之间的反应。光谱学研究物质与光之间的关系,而这些关系并不涉及化学反应。准确的说,化学的研究范围是包括分子、电子、离子、原子、原子团在内的核-电子体系。[2]
此条目需要精通或熟悉相关主题的编者参与及协助编辑。 (2014年9月15日) |
“化学”一词,若单从字面解释就是“变化的学问”之意。化学主要研究的是化学物质[3]互相作用的科学。化学如同更广义的物理皆为自然科学之基础科学。很多人称化学为“中心科学”,因为化学为部分科学学门的核心,连接物理概念及其他科学,如材料科学、纳米技术、生物化学等。研究化学的学者称为化学家。在化学家的概念中一切物质都是由原子或比原子更细小的物质组成,如电子、中子和质子。[4]但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、离子或者晶体。
英语中的“化学”(chemistry)一字的语源有多种说法。一种说法认为是由“炼金术”(alchemy)得名的。英语中“alchemy”一词源于古法语的“alkemie”和阿拉伯语的“al-kimia”,意为“形态变化的学问”(the art of transformation)。阿拉伯语中的“kimia”一字则源于希腊语。亦有另一种说法认为英语中的“chemistry”一字源自埃及语中的“kēme”,意思是“土”(earth)。
在中国,“化学”一词最早出现在1857年墨海书馆出版的期刊《六合丛谈》[5]。伟烈亚力提及王韬在其日记中记载了从戴德生处听闻的“化学”一词[6][7]。一般认为中文中的“化学”一词是徐寿翻译英国人的书《化学鉴原》一书时发明的。
最早的化学要算是人类对火的研究。对于当时的人来说,火可以将一种物体变成另一种物体,所以成为了当时人最有兴趣研究的现象。如果没有火,人类不会发现到铁和玻璃的炼制方法。
人类发现了黄金这种贵重的金属之后,很多人转移研究怎样把其他物质变成黄金。公元前300年至1500年,炼金术士皆研究如何将一些便宜的金属转化成黄金,因此累积了金属的提取和处理有关的观察和技术。有些炼金术士主要的工作是制造药物。2000年前,人类已广泛使用金、银、汞、铜、铁和青铜。
早期化学家收集了很多不同物质的资料。在17世纪以前,化学成就并不大(燃素说、炼金术),其中较有成就者如罗伯特·波义耳。到了1750年,化学仍带有神秘色彩,并为不正确的理论支配著。直到1773年,安托万-洛朗·德·拉瓦锡提出了质量守恒定律,并以氧化还原反应解释燃烧现象,推翻了盛行于中世纪的燃素说,才开启了现代化学之路;他因此被尊崇为“化学之父”。接著道尔顿整合当时的化学知识,并以自身的实验所得提出了划时代的原子说。此后,一些化学家相继发现了各种化学元素,后来门得列夫建立了元素周期表令化学视界更臻完备。1901年,化学家诺贝尔以其遗产成立了诺贝尔化学奖,以表扬在科学领域及其他重要领域对人类有较大贡献者。
现代化学始于20世纪初期蓬勃发展的量子力学。莱纳斯·鲍林引进量子力学解释化学键的本质,得以用波函数的线性叠加来描述。质子、中子和电子的发现,使化学真正由原子尺度来理解化学反应。量子力学和电子学的发展,使得许多新型仪器得以开发,来探索和分析化合物的结构和成分,如光谱仪、色谱仪、核磁共振仪和质谱仪等。
当代化学大致分为四大学门,各学门又有许多延伸的子学门和应用化学领域。
四大学门主要为:
其他延展和应用的学门:
一粒原子是由原子核及外围带负电荷的电子(称为核外电子)组成的粒子,一般而言是化学研究的最小尺度范畴。原子核通常是由质子和中子组成。与通常的物理概念不同的是,单一的质子在化学领域被认为是1H(氕)原子核,也就是说原子核内必然含有质子,但可能不含中子。
电子带负电荷,质子带正电荷,个数相同使得电荷平衡,令整个原子呈电中性。当核外电子数与原子核内质子数不相同时,则形成离子。通常认为离子也是原子的一种。
拥有相同质子数的同一类原子被称为“元素”。例如,氢这种元素中所有原子都是只有一粒质子。这个概念换过来说亦可:所有原子核中有六粒质子的原子都是碳,所有原子核中有九十二粒质子的都是铀。元素亦有另一定义,就是所有不可以用化学方法分解的物质都是元素。
在这么多种列举元素的方法中,最常用和最方便的莫过于元素周期表。周期表根据原子序数来排列原子,而原子序数就是一粒原子中质子的数量。因为这个奇怪的排列,排在一起的元素,无论是同一个直行、同一个横行还是纯粹在附近,都有一些大致上固定的关系。
同一种元素可能有很多个不同的核素。它们的质子数相同而中子数不同,因而化学性质相同。但由于它们的中子数不同,造成原子核稳定性不同,而造成某些核素具备放射性。同一种元素的不同核素在元素周期表内占据同一个位置,因此同一种元素的不同核素互称同位素。例如1H(氕)与2H(氘)互称同位素。
化学物质是指一种物体,它既确定了其化学组成,也确定了它的化学性质[9]。严格的来讲,混合的化合物,元素等都不能算是化学物质,只能说是化学药品或者说化学制品。大多数我们日常生活碰到的化学品都是混合物,比如空气、合金、生物制品。
物质的命名法在化学语言当中是最严格的一环。早在很久以前,化合物的命名是由其发现者自行决定的,这样则导致了命名的困难和混乱。而现在我们最常用的还是国际纯粹与应用化学联合会 (International Union of Pure and Applied Chemistry) (IUPAC)命名方法。它用一个命名系统让所有的化合物都有一个独有的名称和代码。有机化合物通过有机命名[10]系统命名;而无机化合物通过无机命名[11]系统命名。而通过化学索引服务(Chemical Abstracts Service),我们可以轻松的通过CAS号(CAS registry number)来找到每一个化合物的性质、特性、命名和结构。
一个分子是化合物的最基本结构,不用化学方法是拆不开的。大部分分子都是由两个或以上原子组成,但是都有些特例,例如氦气分子,只有一个原子。这些原子,如果多于一个,是通过化学键结合。
离子是带电荷的物质,可以由原子或分子失去或得到电子形成。正离子(例如钠离子Na+)和负离子(例如氯离子Cl−)结合可以成为电荷中性的盐(例如食盐NaCl)。有些离子是由几个原子组成,而它们进行化学作用的时候又不会分离,例如磷酸根离子(PO43−)、铵离子(NH4+)。气相的离子通常被称为等离子体。
物质可以被分类为一种酸或者是一种碱。通常我们有几种进行酸碱分类定义的理论。其中最简单的要数阿累尼乌斯理论(Arrhenius theory),它认为:酸是能够在水当中电离出水合氢离子的物质;碱则是在水当中电离出氢氧根离子的物质。而酸碱质子理论(Brønsted–Lowry acid-base theory)则认为酸是能够在化学反应中给其他物质氢离子的物质;而碱则是相应能得到氢离子的物质。第三种理论被称作是路易斯酸碱理论(Lewis acid-base theory),它是基于形成化学键之上的。路易斯理论认为:酸是在键的形成当中接受了一对电子;而碱则是在形成键的过程中给予了其他物质一对电子。因此,一个物质如果对于不同的酸碱理论来说,可能在此是酸,在另外一个理论来说却是碱。
酸性强度的衡量方法主要有两种:第一种是阿累尼乌斯定义的也就是我们最常用的pH,它是通过衡量一个溶液当中氢离子的浓度来确定酸性的大小。它的计算方法是pH=-log10[H+],也就是pH等于氢离子浓度的负对数(以10为底)。因此可以说,拥有更高浓度的氢离子溶液,其pH越低而酸性更强。第二种是Brønsted–Lowry定义,也就是酸解离常数(Ka),它衡量的是物质作为酸的时候给予氢离子的能力。因此一个酸性越强的物质,其Ka更高,更具有给予氢离子的倾向。同样的我们可以用pOH代替pH, Kb代替Ka来说明碱性强度。
氧化还原的概念和一个物质的原子获取或者给予电子的能力有关。物质拥有氧化其他物质的能力就被成为氧化性,而此物质被成为氧化剂(oxidizing agents),或者成为氧化物。一个氧化剂能够将电子从其他的物质上移走。相应的,具有还原其他物质的物质被称作有还原性而成为还原剂(reducing agents)或者成为还原物。一个还原试剂能够传递给其他物质电子并且氧化自身。而正因为其“给予”了其他物质电子,它还被称为供电子物。氧化还原的性质与氧化数(oxidation number)有关--其实真正的给予或者获取完成的电子并不存在。所以,氧化过程被定义为增加了氧化数,而还原则是降低的氧化数。
简单来说,氧化反应指还原剂失去电子,化合价上升;而还原反应是指氧化剂得到电子,但化合价下降。氧化和还原反应必须同时进行。
化学品泛指一切有确实化学构造及化学成份的物质,所以又称化学物质。它们可以是元素、化合物或混合物。日常生活中,我们会遇到的东西多数都是混合物,例如合金。
化合物是一些以不同元素用固定比例结合而成的物质。成份的比例决定了它的化学特性。例如水是用氢同氧以二比一组合而成,组成水分子的三个原子之间构成了104.5度的健角。不同化合物及元素之间的变化称为化学反应。
摩尔(英语:mole,台湾使用“莫尔”一词)是物质的量的国际单位,符号为mol。1摩尔是所含基本微粒个数与12克的碳-12()中所含原子个数相等的一系统物质的量。使用摩尔时,应指明基本微粒,可以是分子、原子、离子、电子或其他基本微粒,也可以是基本微粒的特定组合体。1摩尔物质中所含基本微粒的个数等于阿伏伽德罗常数,符号为NA,数值是6.0214129×1023,常取6.02×1023。
化学键是指组成分子或材料的粒子之间互相作用的力量,其中粒子可以是原子、离子或是分子。化学键的物理本质来自于粒子和粒子之间的静电力,量子力学上意指原子间电子的波函数线性叠加。化学键是化学最重要的概念之一,物理理论本质由莱纳斯·鲍林建立。化学家为能简洁表述化学键并规避量子力学的复杂性,将化学键分类为共价键、离子键和金属键,较弱的键结如氢键及较特殊的配位相互作用等。无论分类为何,其物理本质都是相同的。
分子间力是不同分子之间的作用力,主要有氢键,范德华力,亲水作用/疏水作用等,这种作用力比化学键弱,容易打开或重新组合,但是是形成分子空间排列和架构的重要作用力,是现代化学的重要研究方向之一。
物质有时会是液体,有时会是固体,有时会是气体,这些叫作物质的相态。一件物质是否软、透不透光、透光的话它的折射率是多少,这些都是一件物质的物理特性。总而言之,物理特性即是一种物质不靠化学作用都可以断定到的特性。
化学反应,亦称化学变化是一种物质转变为另一种物质的过程,涉及分子中原子的交换和化学键的转移、形成或消失。化学反应形成的改变既可令很多独立的分子结合,也可将一个较大型的分子拆开成为很多独立的小分子,甚至是同一分子内有原子移动,即使原子的数量没有改变,但仍会构成化学反应。
虽然平衡概念在科学各领域都得到广泛的应用,但在化学中,化学平衡是指化学成分中出现多种不同状态的可能性,例如在可以彼此反应的几种化合物的混合物中,或当物质可以以多于一种相态存在的时候。
即使有著不变的化学组成,但在平衡系统中的化学物质通常并非处于静止状态;这些物质的分子会互相继续进行反应,从而产生动态平衡。因此,化学平衡描述了诸如化学成分之类的参数随时间保持不变的状态。
化学反应的守恒必须符合物理守恒定律,反应前后应符合:
化学工业(化工)是当代经济活动当中重要的一部分。全球50大化学品制造商在2004年共销售了5870亿美元的业绩,其中利润占据了8.1%,其中研发成本占据了2.1% [12]
其他还有诸如放射分析化学、同位素化学、辐射化学、核燃料、反应堆和裂变产物化学、地球化学、海洋化学、大气化学、环境化学、宇宙化学、星际化学、药物化学、神经化学、农业化学、石油化学、木材化学、土壤化学、煤化学、食品化学、化学地理学、天体化学、岩石化学、空间化学及胶体与界面化学等
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.