在数学 和信号处理 中,Z转换 (英语:Z-transform )把离散 的实数 或复数 时间讯号从时域 转为复频域 (z域或z平面)表示。
关于统计学中的标准Z-分数,请见“
标准分数 ”。关于统计学中的Fisher Z-转换,请见“
费雪转换 ”。
可以把它认为是拉普拉斯变换 的离散时间等价。在时标微积分 中会探索它们的相似性。
现在所知的Z变换的基本思想,拉普拉斯 就已了解,而1947年W. Hurewicz 用作求解常系数差分方程 的一种容易处理的方式。[ 1] 后来由1952年哥伦比亚大学的采样控制组的约翰·拉加齐尼 和查德 称其为“Z变换”。[ 2] [ 3]
约翰·拉加齐尼 后来发展并推广了改进或高级Z变换 。[ 4] [ 5]
Z变换中包含的思想在数学里称作母函数 方法,该方法可以追溯到1730年的时候,棣莫弗 与概率论结合将其引入。[ 6]
从数学的角度,当把数字序列视为解析函数的(洛朗)展开时,Z变换也可以看成是洛朗级数 。
另外,只对 n ≥ 0 定义的 x[n] ,单边 Z变换定义为
X
(
z
)
=
Z
{
x
[
n
]
}
=
∑
n
=
0
∞
x
[
n
]
z
−
n
.
{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}=\sum _{n=0}^{\infty }x[n]z^{-n}.}
在信号处理 中,这个定义可以用来计算离散时间因果系统 的单位冲激响应 。
单边Z变换的一个重要例子是概率母函数 ,其中 x[n] 部分是离散随机变量取 n 值时的概率,而函数 X(z) 通常写作 X(s) ,用 s = z −1 表示。Z变换的性质(在下面)在概率论背景下有很多有用的解释。
地球物理中的Z变换,通常的定义是 z 的幂级数而非 z −1 的。例如,Enders Anthony Robinson [ 7] 和Ernest R. Kanasewich 都使用这个惯例。[ 8] 地球物理定义为:
X
(
z
)
=
Z
{
x
[
n
]
}
=
∑
n
x
[
n
]
z
n
.
{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}=\sum _{n}x[n]z^{n}.}
这两个定义是等价的;但差分结果会有一些不同。例如,零点和极点 的位置移动在单位圆 内使用一个定义,在单位圆外用另一个定义。[ 7] [ 8]
因此,需要注意特定作者使用的定义。
逆 Z变换为
x
[
n
]
=
Z
−
1
{
X
(
z
)
}
=
1
2
π
j
∮
C
X
(
z
)
z
n
−
1
d
z
{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}={\frac {1}{2\pi j}}\oint _{C}X(z)z^{n-1}dz}
其中 C 是完全处于收敛域 (ROC)内的包围原点的一个逆时针闭合路径。在 ROC 是因果的情况下(参见例2 ),这意味着路径 C 必须包围 X(z) 的所有极点。
这个曲线积分 的一个特殊情形出现在 C 是单位圆的时候(可以在ROC包含单位圆的时候使用,总能保证 X(z) 是稳定的,即所有极点都在单位圆内)。逆Z变换可以化简为逆离散傅里叶变换 :
x
[
n
]
=
1
2
π
∫
−
π
+
π
X
(
e
j
ω
)
e
j
ω
n
d
ω
.
{\displaystyle x[n]={\frac {1}{2\pi }}\int _{-\pi }^{+\pi }X(e^{j\omega })e^{j\omega n}d\omega .}
有限范围 n 和有限数量的均匀间隔的 z 值的Z变换可以用Bluestein的FFT算法 方便地计算。离散时间傅里叶变换 (DTFT)—不要与离散傅里叶变换 (DFT)混淆—是通过将 z 限制在位于单位圆上而得到的一种Z变换的特殊情况。
收敛域 (ROC)是指Z变换的求和收敛的复平面上的点集。
R
O
C
=
{
z
:
|
∑
n
=
−
∞
∞
x
[
n
]
z
−
n
|
<
∞
}
{\displaystyle ROC=\left\{z:\left|\sum _{n=-\infty }^{\infty }x[n]z^{-n}\right|<\infty \right\}}
令
x
[
n
]
=
(
0.5
)
n
{\displaystyle x[n]=(0.5)^{n}}
。在区间
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
上展开
x
[
n
]
{\displaystyle x[n]}
成为
x
[
n
]
=
{
⋯
,
0.5
−
3
,
0.5
−
2
,
0.5
−
1
,
1
,
0.5
,
0.5
2
,
0.5
3
,
⋯
}
=
{
⋯
,
2
3
,
2
2
,
2
,
1
,
0.5
,
0.5
2
,
0.5
3
,
⋯
}
.
{\displaystyle x[n]=\left\{\cdots ,0.5^{-3},0.5^{-2},0.5^{-1},1,0.5,0.5^{2},0.5^{3},\cdots \right\}=\left\{\cdots ,2^{3},2^{2},2,1,0.5,0.5^{2},0.5^{3},\cdots \right\}.}
观察上面的和
∑
n
=
−
∞
∞
x
[
n
]
z
−
n
→
∞
.
{\displaystyle \sum _{n=-\infty }^{\infty }x[n]z^{-n}\to \infty .}
因此,没有一个
z
{\displaystyle z}
值可以满足这个条件。
ROC用蓝色表示,单位圆用灰色虚点圆表示(外圈者,而 |z | = 0.5 这个圆用虚线圆表示(内圈者)
令
x
[
n
]
=
0.5
n
u
[
n
]
{\displaystyle x[n]=0.5^{n}u[n]\ }
(其中 u 是单位阶跃函数 )。在区间 (−∞, ∞) 上展开 x[n] 得到
x
[
n
]
=
{
⋯
,
0
,
0
,
0
,
1
,
0.5
,
0.5
2
,
0.5
3
,
⋯
}
.
{\displaystyle x[n]=\left\{\cdots ,0,0,0,1,0.5,0.5^{2},0.5^{3},\cdots \right\}.}
观察这个和
∑
n
=
−
∞
∞
x
[
n
]
z
−
n
=
∑
n
=
0
∞
0.5
n
z
−
n
=
∑
n
=
0
∞
(
0.5
z
)
n
=
1
1
−
0.5
z
−
1
.
{\displaystyle \sum _{n=-\infty }^{\infty }x[n]z^{-n}=\sum _{n=0}^{\infty }0.5^{n}z^{-n}=\sum _{n=0}^{\infty }\left({\frac {0.5}{z}}\right)^{n}={\frac {1}{1-0.5z^{-1}}}.}
最后一个等式来自无穷几何级数 ,而等式仅在 |0.5z −1 | < 1 时成立,可以以 z 为变量写成 |z | > 0.5。因此,收敛域为 |z | > 0.5。在这种情况下,收敛域为复平面“挖掉”原点为中心的半径为 0.5 的圆盘。
ROC用蓝色表示,单位圆用灰色虚点圆表示(用眼睛看会呈红色),而 |z | = 0.5 这个圆用虚线圆表示
令
x
[
n
]
=
−
(
0.5
)
n
u
[
−
n
−
1
]
{\displaystyle x[n]=-(0.5)^{n}u[-n-1]\ }
(其中 u 是单位阶跃函数 )。在区间 (−∞, ∞) 上展开 x[n] 得到
x
[
n
]
=
{
⋯
,
−
(
0.5
)
−
3
,
−
(
0.5
)
−
2
,
−
(
0.5
)
−
1
,
0
,
0
,
0
,
0
,
⋯
}
.
{\displaystyle x[n]=\left\{\cdots ,-(0.5)^{-3},-(0.5)^{-2},-(0.5)^{-1},0,0,0,0,\cdots \right\}.}
观察这个和
∑
n
=
−
∞
∞
x
[
n
]
z
−
n
=
−
∑
n
=
−
∞
−
1
0.5
n
z
−
n
=
−
∑
m
=
1
∞
(
z
0.5
)
m
=
1
−
1
1
−
0.5
−
1
z
=
1
1
−
0.5
z
−
1
{\displaystyle \sum _{n=-\infty }^{\infty }x[n]z^{-n}=-\sum _{n=-\infty }^{-1}0.5^{n}z^{-n}=-\sum _{m=1}^{\infty }\left({\frac {z}{0.5}}\right)^{m}=1-{\frac {1}{1-0.5^{-1}z}}={\frac {1}{1-0.5z^{-1}}}}
再次使用无穷几何级数 ,此等式只在 |0.5−1 z | < 1 时成立,可以用 z 为变量写成 |z | < 0.5。因此,收敛域为 |z | < 0.5。在这种情况下,收敛域为中心在原点的半径为 0.5 的圆盘。
本例与上例的不同之处仅在收敛域上。这是意图展示只有变换结果是不够的。
实例2和3清楚地表明,当且仅当指定收敛域时,
x
[
n
]
{\displaystyle x[n]}
的Z变换 X(z) 才是唯一的。画因果和非因果情形的零极点图 表明,在这两种情况下收敛域都不包含极点位于 0.5 的情形。这可以拓展到多个极点的情形:收敛域永远不会 包含极点。
在例2中,因果系统产生一个包含 |z | = ∞ 的收敛域,而例3中的非因果系统产生包含
|
z
|
=
0
{\displaystyle |z|=0}
的收敛域。
ROC表示为蓝色圆环 0.5 < |z | < 0.75
在有多个极点的系统中,收敛域可以既不包含 |z | = ∞ 也不包含 |z | = 0。画出的收敛域与一个圆形带。例如,
x
[
n
]
=
0.5
n
u
[
n
]
−
0.75
n
u
[
−
n
−
1
]
{\displaystyle x[n]=0.5^{n}u[n]-0.75^{n}u[-n-1]}
的极点为 0.5 与 0.75。收敛域会是 0.5 < |z | < 0.75,不包含原点和无穷大。这样的系统称为混合因果系统,因为它包含一个因果项 (0.5)n u [n ] 和一个非因果项 −(0.75)n u [−n −1]。
一个系统的稳定性 可以只通过了解收敛域来确定。如果收敛域包含单位圆(即 |z | = 1),那么系统是稳定的。在上述系统中因果系统(例2)是稳定的,因为 |z | > 0.5 包含单位圆。
如果我们有一个没有给定收敛域Z变换(即模糊的
x
[
n
]
{\displaystyle x[n]}
),则可以确定一个唯一的
x
[
n
]
{\displaystyle x[n]}
满足下列:
如果要求满足稳定性,则收敛域必须包含单位圆;如果要求为一个因果系统,则收敛域必须包含无穷大,并且系统函数应为一个右边序列。如果要求为一个非因果系统,那么收敛域必须包含原点,且系统函数为左边序列。如果既要满足稳定性,也要满足因果性,则系统函数的所有极点都必须在单位圆内。
通过这种方法可以找到唯一的
x
[
n
]
{\displaystyle x[n]}
。
More information , ...
Z变换性质
时域
Z域
证明
收敛域
记法
x
[
n
]
=
Z
−
1
{
X
(
z
)
}
{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}}
X
(
z
)
=
Z
{
x
[
n
]
}
{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}}
r
2
<
|
z
|
<
r
1
{\displaystyle r_{2}<|z|<r_{1}}
线性
a
1
x
1
[
n
]
+
a
2
x
2
[
n
]
{\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]}
a
1
X
1
(
z
)
+
a
2
X
2
(
z
)
{\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)}
X
(
z
)
=
∑
n
=
−
∞
∞
(
a
1
x
1
(
n
)
+
a
2
x
2
(
n
)
)
z
−
n
=
a
1
∑
n
=
−
∞
∞
x
1
(
n
)
z
−
n
+
a
2
∑
n
=
−
∞
∞
x
2
(
n
)
z
−
n
=
a
1
X
1
(
z
)
+
a
2
X
2
(
z
)
{\displaystyle {\begin{aligned}X(z)&=\sum _{n=-\infty }^{\infty }(a_{1}x_{1}(n)+a_{2}x_{2}(n))z^{-n}\\&=a_{1}\sum _{n=-\infty }^{\infty }x_{1}(n)z^{-n}+a_{2}\sum _{n=-\infty }^{\infty }x_{2}(n)z^{-n}\\&=a_{1}X_{1}(z)+a_{2}X_{2}(z)\end{aligned}}}
包含 ROC1 ∩ ROC2
时间膨胀
x
K
[
n
]
=
{
x
[
r
]
,
n
=
r
K
0
,
n
≠
r
K
{\displaystyle x_{K}[n]={\begin{cases}x[r],&n=rK\\0,&n\not =rK\end{cases}}}
r : 整数
X
(
z
K
)
{\displaystyle X(z^{K})}
X
K
(
z
)
=
∑
n
=
−
∞
∞
x
K
(
n
)
z
−
n
=
∑
r
=
−
∞
∞
x
(
r
)
z
−
r
K
=
∑
r
=
−
∞
∞
x
(
r
)
(
z
K
)
−
r
=
X
(
z
K
)
{\displaystyle {\begin{aligned}X_{K}(z)&=\sum _{n=-\infty }^{\infty }x_{K}(n)z^{-n}\\&=\sum _{r=-\infty }^{\infty }x(r)z^{-rK}\\&=\sum _{r=-\infty }^{\infty }x(r)(z^{K})^{-r}\\&=X(z^{K})\end{aligned}}}
R
1
K
{\displaystyle R^{\frac {1}{K}}}
降采样
x
[
n
K
]
{\displaystyle x[nK]}
1
K
∑
p
=
0
K
−
1
X
(
z
1
K
⋅
e
−
i
2
π
K
p
)
{\displaystyle {\frac {1}{K}}\sum _{p=0}^{K-1}X\left(z^{\tfrac {1}{K}}\cdot e^{-i{\tfrac {2\pi }{K}}p}\right)}
ohio-state.edu (页面存档备份 ,存于互联网档案馆 ) 或 ee.ic.ac.uk (页面存档备份 ,存于互联网档案馆 )
时移
x
[
n
−
k
]
{\displaystyle x[n-k]}
z
−
k
X
(
z
)
{\displaystyle z^{-k}X(z)}
Z
{
x
[
n
−
k
]
}
=
∑
n
=
0
∞
x
[
n
−
k
]
z
−
n
=
∑
j
=
−
k
∞
x
[
j
]
z
−
(
j
+
k
)
j
=
n
−
k
=
∑
j
=
−
k
∞
x
[
j
]
z
−
j
z
−
k
=
z
−
k
∑
j
=
−
k
∞
x
[
j
]
z
−
j
=
z
−
k
∑
j
=
0
∞
x
[
j
]
z
−
j
x
[
β
]
=
0
,
β
<
0
=
z
−
k
X
(
z
)
{\displaystyle {\begin{aligned}Z\{x[n-k]\}&=\sum _{n=0}^{\infty }x[n-k]z^{-n}\\&=\sum _{j=-k}^{\infty }x[j]z^{-(j+k)}&&j=n-k\\&=\sum _{j=-k}^{\infty }x[j]z^{-j}z^{-k}\\&=z^{-k}\sum _{j=-k}^{\infty }x[j]z^{-j}\\&=z^{-k}\sum _{j=0}^{\infty }x[j]z^{-j}&&x[\beta ]=0,\beta <0\\&=z^{-k}X(z)\end{aligned}}}
ROC,除了 k > 0 时 z = 0 和 k < 0 时 z = ∞
Z域的
尺度性质
a
n
x
[
n
]
{\displaystyle a^{n}x[n]}
X
(
a
−
1
z
)
{\displaystyle X(a^{-1}z)}
Z
{
a
n
x
[
n
]
}
=
∑
n
=
−
∞
∞
a
n
x
(
n
)
z
−
n
=
∑
n
=
−
∞
∞
x
(
n
)
(
a
−
1
z
)
−
n
=
X
(
a
−
1
z
)
{\displaystyle {\begin{aligned}{\mathcal {Z}}\left\{a^{n}x[n]\right\}&=\sum _{n=-\infty }^{\infty }a^{n}x(n)z^{-n}\\&=\sum _{n=-\infty }^{\infty }x(n)(a^{-1}z)^{-n}\\&=X(a^{-1}z)\end{aligned}}}
|
a
|
r
2
<
|
z
|
<
|
a
|
r
1
{\displaystyle |a|r_{2}<|z|<|a|r_{1}}
时间反转
x
[
−
n
]
{\displaystyle x[-n]}
X
(
z
−
1
)
{\displaystyle X(z^{-1})}
Z
{
x
(
−
n
)
}
=
∑
n
=
−
∞
∞
x
(
−
n
)
z
−
n
=
∑
m
=
−
∞
∞
x
(
m
)
z
m
=
∑
m
=
−
∞
∞
x
(
m
)
(
z
−
1
)
−
m
=
X
(
z
−
1
)
{\displaystyle {\begin{aligned}{\mathcal {Z}}\{x(-n)\}&=\sum _{n=-\infty }^{\infty }x(-n)z^{-n}\\&=\sum _{m=-\infty }^{\infty }x(m)z^{m}\\&=\sum _{m=-\infty }^{\infty }x(m){(z^{-1})}^{-m}\\&=X(z^{-1})\\\end{aligned}}}
1
r
1
<
|
z
|
<
1
r
2
{\displaystyle {\tfrac {1}{r_{1}}}<|z|<{\tfrac {1}{r_{2}}}}
共轭复数
x
∗
[
n
]
{\displaystyle x^{*}[n]}
X
∗
(
z
∗
)
{\displaystyle X^{*}(z^{*})}
Z
{
x
∗
(
n
)
}
=
∑
n
=
−
∞
∞
x
∗
(
n
)
z
−
n
=
∑
n
=
−
∞
∞
[
x
(
n
)
(
z
∗
)
−
n
]
∗
=
[
∑
n
=
−
∞
∞
x
(
n
)
(
z
∗
)
−
n
]
∗
=
X
∗
(
z
∗
)
{\displaystyle {\begin{aligned}{\mathcal {Z}}\{x^{*}(n)\}&=\sum _{n=-\infty }^{\infty }x^{*}(n)z^{-n}\\&=\sum _{n=-\infty }^{\infty }\left[x(n)(z^{*})^{-n}\right]^{*}\\&=\left[\sum _{n=-\infty }^{\infty }x(n)(z^{*})^{-n}\right]^{*}\\&=X^{*}(z^{*})\end{aligned}}}
实部
Re
{
x
[
n
]
}
{\displaystyle \operatorname {Re} \{x[n]\}}
1
2
[
X
(
z
)
+
X
∗
(
z
∗
)
]
{\displaystyle {\tfrac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]}
虚部
Im
{
x
[
n
]
}
{\displaystyle \operatorname {Im} \{x[n]\}}
1
2
j
[
X
(
z
)
−
X
∗
(
z
∗
)
]
{\displaystyle {\tfrac {1}{2j}}\left[X(z)-X^{*}(z^{*})\right]}
微分
n
x
[
n
]
{\displaystyle nx[n]}
−
z
d
X
(
z
)
d
z
{\displaystyle -z{\frac {dX(z)}{dz}}}
Z
{
n
x
(
n
)
}
=
∑
n
=
−
∞
∞
n
x
(
n
)
z
−
n
=
z
∑
n
=
−
∞
∞
n
x
(
n
)
z
−
n
−
1
=
−
z
∑
n
=
−
∞
∞
x
(
n
)
(
−
n
z
−
n
−
1
)
=
−
z
∑
n
=
−
∞
∞
x
(
n
)
d
d
z
(
z
−
n
)
=
−
z
d
X
(
z
)
d
z
{\displaystyle {\begin{aligned}{\mathcal {Z}}\{nx(n)\}&=\sum _{n=-\infty }^{\infty }nx(n)z^{-n}\\&=z\sum _{n=-\infty }^{\infty }nx(n)z^{-n-1}\\&=-z\sum _{n=-\infty }^{\infty }x(n)(-nz^{-n-1})\\&=-z\sum _{n=-\infty }^{\infty }x(n){\frac {d}{dz}}(z^{-n})\\&=-z{\frac {dX(z)}{dz}}\end{aligned}}}
卷积
x
1
[
n
]
∗
x
2
[
n
]
{\displaystyle x_{1}[n]*x_{2}[n]}
X
1
(
z
)
X
2
(
z
)
{\displaystyle X_{1}(z)X_{2}(z)}
Z
{
x
1
(
n
)
∗
x
2
(
n
)
}
=
Z
{
∑
l
=
−
∞
∞
x
1
(
l
)
x
2
(
n
−
l
)
}
=
∑
n
=
−
∞
∞
[
∑
l
=
−
∞
∞
x
1
(
l
)
x
2
(
n
−
l
)
]
z
−
n
=
∑
l
=
−
∞
∞
x
1
(
l
)
[
∑
n
=
−
∞
∞
x
2
(
n
−
l
)
z
−
n
]
=
[
∑
l
=
−
∞
∞
x
1
(
l
)
z
−
l
]
[
∑
n
=
−
∞
∞
x
2
(
n
)
z
−
n
]
=
X
1
(
z
)
X
2
(
z
)
{\displaystyle {\begin{aligned}{\mathcal {Z}}\{x_{1}(n)*x_{2}(n)\}&={\mathcal {Z}}\left\{\sum _{l=-\infty }^{\infty }x_{1}(l)x_{2}(n-l)\right\}\\&=\sum _{n=-\infty }^{\infty }\left[\sum _{l=-\infty }^{\infty }x_{1}(l)x_{2}(n-l)\right]z^{-n}\\&=\sum _{l=-\infty }^{\infty }x_{1}(l)\left[\sum _{n=-\infty }^{\infty }x_{2}(n-l)z^{-n}\right]\\&=\left[\sum _{l=-\infty }^{\infty }x_{1}(l)z^{-l}\right]\!\!\left[\sum _{n=-\infty }^{\infty }x_{2}(n)z^{-n}\right]\\&=X_{1}(z)X_{2}(z)\end{aligned}}}
包含 ROC1 ∩ ROC2
互相关
r
x
1
,
x
2
=
x
1
∗
[
−
n
]
∗
x
2
[
n
]
{\displaystyle r_{x_{1},x_{2}}=x_{1}^{*}[-n]*x_{2}[n]}
R
x
1
,
x
2
(
z
)
=
X
1
∗
(
1
z
∗
)
X
2
(
z
)
{\displaystyle R_{x_{1},x_{2}}(z)=X_{1}^{*}({\tfrac {1}{z^{*}}})X_{2}(z)}
包含
X
1
(
1
z
∗
)
{\displaystyle X_{1}({\tfrac {1}{z^{*}}})}
与
X
2
(
z
)
{\displaystyle X_{2}(z)}
的ROC的交集
一阶差分
x
[
n
]
−
x
[
n
−
1
]
{\displaystyle x[n]-x[n-1]}
(
1
−
z
−
1
)
X
(
z
)
{\displaystyle (1-z^{-1})X(z)}
包含 X1 (z) 与 z ≠ 0 的ROC的交集
累积
∑
k
=
−
∞
n
x
[
k
]
{\displaystyle \sum _{k=-\infty }^{n}x[k]}
1
1
−
z
−
1
X
(
z
)
{\displaystyle {\frac {1}{1-z^{-1}}}X(z)}
∑
n
=
−
∞
∞
∑
k
=
−
∞
n
x
[
k
]
z
−
n
=
∑
n
=
−
∞
∞
(
x
[
n
]
+
⋯
+
x
[
−
∞
]
)
z
−
n
=
X
[
z
]
(
1
+
z
−
1
+
z
−
2
+
⋯
)
=
X
[
z
]
∑
j
=
0
∞
z
−
j
=
X
[
z
]
1
1
−
z
−
1
{\displaystyle {\begin{aligned}\sum _{n=-\infty }^{\infty }\sum _{k=-\infty }^{n}x[k]z^{-n}&=\sum _{n=-\infty }^{\infty }(x[n]+\cdots +x[-\infty ])z^{-n}\\&=X[z]\left(1+z^{-1}+z^{-2}+\cdots \right)\\&=X[z]\sum _{j=0}^{\infty }z^{-j}\\&=X[z]{\frac {1}{1-z^{-1}}}\end{aligned}}}
乘法
x
1
[
n
]
x
2
[
n
]
{\displaystyle x_{1}[n]x_{2}[n]}
1
j
2
π
∮
C
X
1
(
v
)
X
2
(
z
v
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}({\tfrac {z}{v}})v^{-1}\mathrm {d} v}
-
Close
帕塞瓦尔定理
∑
n
=
−
∞
∞
x
1
[
n
]
x
2
∗
[
n
]
=
1
j
2
π
∮
C
X
1
(
v
)
X
2
∗
(
1
v
∗
)
v
−
1
d
v
{\displaystyle \sum _{n=-\infty }^{\infty }x_{1}[n]x_{2}^{*}[n]\quad =\quad {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}^{*}({\tfrac {1}{v^{*}}})v^{-1}\mathrm {d} v}
初值定理 :如果 x [n ] 为因果的,那么
x
[
0
]
=
lim
z
→
∞
X
(
z
)
.
{\displaystyle x[0]=\lim _{z\to \infty }X(z).}
终值定理 :如果 (z −1)X (z ) 的极点在单位圆内,则
x
[
∞
]
=
lim
z
→
1
(
z
−
1
)
X
(
z
)
.
{\displaystyle x[\infty ]=\lim _{z\to 1}(z-1)X(z).}
这里:
u
:
n
↦
u
[
n
]
=
{
1
,
n
≥
0
0
,
n
<
0
{\displaystyle u:n\mapsto u[n]={\begin{cases}1,&n\geq 0\\0,&n<0\end{cases}}}
是单位阶跃函数 而
δ
:
n
↦
δ
[
n
]
=
{
1
,
n
=
0
0
,
n
≠
0
{\displaystyle \delta :n\mapsto \delta [n]={\begin{cases}1,&n=0\\0,&n\neq 0\end{cases}}}
是离散时间单位冲激函数 。两者通常都不认为是真正的函数,但由于它们的不连续性把它们看成是分布(它们在 n = 0 处的值通常无关紧要,除非在处理离散时间的时候,它们会变成衰减离散级数;在本章节中对连续和离散时间域,都在 n = 0 处取 1,否则不能使用下表中收敛域一栏的内容)。同时列出两个“函数”,使得(在连续时间域)单位阶跃函数是单位冲激函数的积分 ,或(在离散时间域)单位阶跃函数是单位冲激函数的求和,因此要令他们的值在 n = 0 处为 1。
双线性变换 可以用在连续时间滤波器(用拉氏域表示)和离散时间滤波器(用Z域表示)之间的转换,其转换关系如下:
s
=
2
T
(
z
−
1
)
(
z
+
1
)
{\displaystyle s={\frac {2}{T}}{\frac {(z-1)}{(z+1)}}}
将一个拉氏域的函数
H
(
s
)
{\displaystyle H(s)}
转换为Z域下的
H
(
z
)
{\displaystyle H(z)}
,或是
z
=
2
+
s
T
2
−
s
T
{\displaystyle z={\frac {2+sT}{2-sT}}}
从Z域转换到拉氏域。借由双线性变换,复数的s平面(拉氏变换)可以映射到复数的z平面(Z转换)。这个转换是非线性的,可以将S平面的整个j Ω轴映射到Z平面的单位圆 内。因此,傅立叶变换(在j Ω axis计算的拉氏变换)变成离散时间傅立叶变换,前提是假设其傅立叶变换存在,也就是拉氏变换的收敛区域包括j Ω轴。
线性常系数差分(LCCD)方程是基于自回归滑动平均 的线性系统表达形式。
∑
p
=
0
N
y
[
n
−
p
]
α
p
=
∑
q
=
0
M
x
[
n
−
q
]
β
q
{\displaystyle \sum _{p=0}^{N}y[n-p]\alpha _{p}=\sum _{q=0}^{M}x[n-q]\beta _{q}}
上面等式两边可以同时除以 α0 ,如果非零,正规化 α0 = 1,LCCD方程可以写成
y
[
n
]
=
∑
q
=
0
M
x
[
n
−
q
]
β
q
−
∑
p
=
1
N
y
[
n
−
p
]
α
p
.
{\displaystyle y[n]=\sum _{q=0}^{M}x[n-q]\beta _{q}-\sum _{p=1}^{N}y[n-p]\alpha _{p}.}
LCCD方程的这种形式有利于更加明确“当前”输出 y[n] 是过去输出 y[n−p] 、当前输入 x[n] 与之前输入 x[n−q] 的一个函数。
对上述方程去Z变换(使用线性和时移法则)得到
Y
(
z
)
∑
p
=
0
N
z
−
p
α
p
=
X
(
z
)
∑
q
=
0
M
z
−
q
β
q
{\displaystyle Y(z)\sum _{p=0}^{N}z^{-p}\alpha _{p}=X(z)\sum _{q=0}^{M}z^{-q}\beta _{q}}
整理结果
H
(
z
)
=
Y
(
z
)
X
(
z
)
=
∑
q
=
0
M
z
−
q
β
q
∑
p
=
0
N
z
−
p
α
p
=
β
0
+
z
−
1
β
1
+
z
−
2
β
2
+
⋯
+
z
−
M
β
M
α
0
+
z
−
1
α
1
+
z
−
2
α
2
+
⋯
+
z
−
N
α
N
.
{\displaystyle H(z)={\frac {Y(z)}{X(z)}}={\frac {\sum _{q=0}^{M}z^{-q}\beta _{q}}{\sum _{p=0}^{N}z^{-p}\alpha _{p}}}={\frac {\beta _{0}+z^{-1}\beta _{1}+z^{-2}\beta _{2}+\cdots +z^{-M}\beta _{M}}{\alpha _{0}+z^{-1}\alpha _{1}+z^{-2}\alpha _{2}+\cdots +z^{-N}\alpha _{N}}}.}
由代数基本定理 得知分子 有 M 个根 (对应于 H 的零点 )和分母 有 N 个根(对应于极点 )。用极点和零点重新整理传递函数 为
H
(
z
)
=
(
1
−
q
1
z
−
1
)
(
1
−
q
2
z
−
1
)
⋯
(
1
−
q
M
z
−
1
)
(
1
−
p
1
z
−
1
)
(
1
−
p
2
z
−
1
)
⋯
(
1
−
p
N
z
−
1
)
{\displaystyle H(z)={\frac {(1-q_{1}z^{-1})(1-q_{2}z^{-1})\cdots (1-q_{M}z^{-1})}{(1-p_{1}z^{-1})(1-p_{2}z^{-1})\cdots (1-p_{N}z^{-1})}}}
其中 qk 为 k 阶零点,pk 为 k 阶极点。零点和极点通常是复数,当在复平面(z平面)作图时称为零极点图 。
此外,在 z = 0 和 z = ∞ 也可能存在零点和极点。如果我们把这些极点和零点以及高阶零点和极点考虑在内的话,零点和极点的数目总会相等。
通过对分母因式分解,可以使用部分分式分解 可以转换回时域。这样做会导出系统的冲激响应 和线性常系数差分方程。
如果一个系统 H(z) 由信号 X(z) 驱动,那么输出为 Y(z) = H(z)X(z) 。通过对 Y(z) 部分分式分解 并取逆Z变换可以得到输出 y[n] 。在实际运用中,在分式分解
Y
(
z
)
z
{\displaystyle {\frac {Y(z)}{z}}}
之后再乘 z 产生 Y(z) 的一个形式(含有很容易计算逆Z变换的项)往往很有用。
J. R. Ragazzini and L. A. Zadeh. The analysis of sampled-data systems. Trans. Am. Inst. Elec. Eng. 1952, 71 (II): 225–234.
Eliahu Ibrahim Jury. Theory and Application of the Z-Transform Method. Krieger Pub Co. 1973. ISBN 0-88275-122-0 .
Eliahu Ibrahim Jury. Theory and Application of the Z-Transform Method. John Wiley & Sons. 1964: 1.
Refaat El Attar, Lecture notes on Z-Transform , Lulu Press, Morrisville NC, 2005. ISBN 978-1-4116-1979-1 .
Ogata, Katsuhiko, Discrete Time Control Systems 2nd Ed , Prentice-Hall Inc, 1995, 1987. ISBN 978-0-13-034281-2 .
Alan V. Oppenheim and Ronald W. Schafer (1999). Discrete-Time Signal Processing, 2nd Edition, Prentice Hall Signal Processing Series. ISBN 978-0-13-754920-7 .