Remove ads

数学物理工程学里,虚数单位是指二次方程的解。虽然没有这样的实数可以满足这个二次方程,但可以通过虚数单位将实数系统延伸至复数系统。延伸的主要动机为有很多实系数多项式方程式无实数解。例如刚才提到的方程式就无实数解。可是倘若我们允许解答为虚数,那么这方程式以及所有的多项式方程式都有解。虚数单位标记为,在电机工程和相关领域中则标记为,这是为了避免与电流(记为)混淆。

虚数单位复平面的位置。横轴是实数,竖轴是虚数
事实速览 高斯整数导航 ...
高斯整数导航
2i
−1+i i 1+i
−2 −1 0 1 2
−1−i i 1−i
−2i
关闭
各种各样的
基本

延伸
其他

圆周率
自然对数的底
虚数单位
无限大

Remove ads

定义

虚数单位定义为二次方程式的两个根中的一个。这方程式又可等价表达为:

由于实数的平方绝不可能是负数,我们假设有这么一个数目解答,给它设定一个符号。很重要的一点是,是一个良定义的数学构造。

另外,虚数单位同样可以表示为:

然而往往被误认为是错的,他们的证明的方法是:

因为,但是-1不等于1。
但请注意:成立的条件有,不能为负数

实数运算可以延伸至虚数与复数。当计算一个表达式时,我们只需要假设是一个未知数,然后依照的定义,替代任何的出现为-1。的更高整数幂数也可以替代为,或,根据下述方程式:

一般地,有以下的公式:

其中表示被4除的余数

Remove ads

i和-i

方程有两个不同的解,它们都是有效的,且互为共轭虚数倒数。更加确切地,一旦固定了方程的一个解,那么(不等于)也是一个解,由于这个方程是的唯一的定义,因此这个定义表面上有歧义。然而,只要把其中一个解选定,并固定为,那么实际上是没有歧义的。这是因为,虽然在数量上不是相等的(它们是一对共轭虚数),但是之间没有质量上的区别(-1和+1就不是这样的)。在任何的等式中同时将所有i替换为-i,该等式仍成立。

Remove ads

正当的使用

虚数单位有时记为。但是,使用这种记法时需要非常谨慎,这是因为有些在实数范围内成立的公式在复数范围内并不成立。例如,公式仅对于非负的实数才成立。

假若这个关系在虚数仍成立,则会出现以下情况:

(不正确)
(不正确)
(不正确)
Remove ads

i的运算

Thumb
虚数单位的平方根在复平面的位置

许多实数的运算都可以推广到,例如平方根对数三角函数。以下运算除第一项外,均为与有关的多值函数,在实际应用时必须指明函数的定义选择在黎曼面的哪一支。下面列出的仅仅是最常采用的黎曼面分支的计算结果。

这是因为:
使用算术平方根符号表示:
其解法为先假设两实数,使得,求解[1]
  • 一个数的次幂为:
一个数的次方根为:
利用欧拉公式
代入不同的值,可计算出无限多的解。当最小的解是0.20787957635076...[2]
  • 为底的对数为:
1.5430806348152...
1.1752011936438...
Remove ads

在程式语言

注解

参见

参考文献

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads