Unbinilium化学符号Ubn)是一种尚未被发现的化学元素原子序数是120。直到这个元素被发现、确认并确定了永久名称之前,UnbiniliumUbn分别为这个元素的暂时系统命名和化学符号。在扩展元素周期表里,Ubn预测是s区元素碱土金属,是第8周期的第二个元素。由于该元素可能处于理论上的超重元素稳定岛之中,其中子数幻数(184)的同位素304
120
Ubn
可能具有极长的半衰期,因而引起人们的研究兴趣。

Quick Facts 概况, 名称·符号·序数 ...
Ubn 120Ubn
氢(非金属) 氦(惰性气体)
锂(碱金属) 铍(碱土金属) 硼(类金属) 碳(非金属) 氮(非金属) 氧(非金属) 氟(卤素) 氖(惰性气体)
钠(碱金属) 镁(碱土金属) 铝(贫金属) 矽(类金属) 磷(非金属) 硫(非金属) 氯(卤素) 氩(惰性气体)
钾(碱金属) 钙(碱土金属) 钪(过渡金属) 钛(过渡金属) 钒(过渡金属) 铬(过渡金属) 锰(过渡金属) 铁(过渡金属) 钴(过渡金属) 镍(过渡金属) 铜(过渡金属) 锌(过渡金属) 镓(贫金属) 锗(类金属) 砷(类金属) 硒(非金属) 溴(卤素) 氪(惰性气体)
铷(碱金属) 锶(碱土金属) 钇(过渡金属) 锆(过渡金属) 铌(过渡金属) 钼(过渡金属) 𨱏(过渡金属) 钌(过渡金属) 铑(过渡金属) 钯(过渡金属) 银(过渡金属) 镉(过渡金属) 铟(贫金属) 锡(贫金属) 锑(类金属) 碲(类金属) 碘(卤素) 氙(惰性气体)
铯(碱金属) 钡(碱土金属) 镧(镧系元素) 铈(镧系元素) 镨(镧系元素) 钕(镧系元素) 钷(镧系元素) 钐(镧系元素) 铕(镧系元素) 钆(镧系元素) 铽(镧系元素) 镝(镧系元素) 钬(镧系元素) 铒(镧系元素) 铥(镧系元素) 镱(镧系元素) 镏(镧系元素) 铪(过渡金属) 钽(过渡金属) 钨(过渡金属) 铼(过渡金属) 锇(过渡金属) 铱(过渡金属) 铂(过渡金属) 金(过渡金属) 汞(过渡金属) 铊(贫金属) 铅(贫金属) 铋(贫金属) 钋(贫金属) 砈(类金属) 氡(惰性气体)
鍅(碱金属) 镭(碱土金属) 锕(锕系元素) 钍(锕系元素) 镤(锕系元素) 铀(锕系元素) 錼(锕系元素) 钸(锕系元素) 鋂(锕系元素) 锔(锕系元素) 鉳(锕系元素) 鉲(锕系元素) 鑀(锕系元素) 镄(锕系元素) 钔(锕系元素) 锘(锕系元素) 铹(锕系元素) 𬬻(过渡金属) 𬭊(过渡金属) 𬭳(过渡金属) 𬭛(过渡金属) 𬭶(过渡金属) 鿏(预测为过渡金属) 𫟼(预测为过渡金属) 𬬭(预测为过渡金属) 鿔(过渡金属) 鿭(预测为贫金属) 𫓧(贫金属) 镆(预测为贫金属) 𫟷(预测为贫金属) 鿬(预测为卤素) 鿫(预测为惰性气体)
Uue(预测为碱金属) Ubn(预测为碱土金属)
143 Uqt(化学性质未知) 144 Uqq(化学性质未知) 145 Uqp(化学性质未知) 146 Uqh(化学性质未知) 147 Uqs(化学性质未知) 148 Uqo(化学性质未知) 149 Uqe(化学性质未知) 150 Upn(化学性质未知) 151 Upu(化学性质未知) 152 Upb(化学性质未知) 153 Upt(化学性质未知) 154 Upq(化学性质未知) 155 Upp(化学性质未知) 156 Uph(化学性质未知) 157 Ups(化学性质未知) 158 Upo(化学性质未知) 159 Upe(化学性质未知) 160 Uhn(化学性质未知) 161 Uhu(化学性质未知) 162 Uhb(化学性质未知) 163 Uht(化学性质未知) 164 Uhq(化学性质未知) 165 Uhp(化学性质未知) 166 Uhh(化学性质未知) 167 Uhs(化学性质未知) 168 Uho(化学性质未知) 169 Uhe(化学性质未知) 170 Usn(化学性质未知) 171 Usu(化学性质未知) 172 Usb(化学性质未知)
121 Ubu(化学性质未知) 122 Ubb(化学性质未知) 123 Ubt(化学性质未知) 124 Ubq(化学性质未知) 125 Ubp(化学性质未知) 126 Ubh(化学性质未知) 127 Ubs(化学性质未知) 128 Ubo(化学性质未知) 129 Ube(化学性质未知) 130 Utn(化学性质未知) 131 Utu(化学性质未知) 132 Utb(化学性质未知) 133 Utt(化学性质未知) 134 Utq(化学性质未知) 135 Utp(化学性质未知) 136 Uth(化学性质未知) 137 Uts(化学性质未知) 138 Uto(化学性质未知) 139 Ute(化学性质未知) 140 Uqn(化学性质未知) 141 Uqu(化学性质未知) 142 Uqb(化学性质未知)
※注:119号及以后的元素并无公认的排位,上表
之排位是从理论计算的电子排布推论而得的一种


Ubn

(Usn)
UueUbnUbu
概况
名称·符号·序数Unbinilium·Ubn·120
元素类别未知
可能为碱土金属
·周期·2·8·s
电子排布[Og] 8s2
(预测[1]
2, 8, 18, 32, 32, 18, 8, 2
(预测)
Ubn的电子层(2, 8, 18, 32, 32, 18, 8, 2 (预测))
Ubn的电子层(2, 8, 18, 32, 32, 18, 8, 2
(预测))
物理性质
物态固体(预测)[1]
密度(接近室温
7(预测)[1] g·cm−3
熔点953 K,680 °C,1256(预测)[1] °F
原子性质
氧化态2, 4(预测)[1]
电离能第一:578.9(预测)[1] kJ·mol−1
原子半径200(预测)[1] pm
Close

尽管德国俄罗斯团队曾多次尝试合成该元素,但Ubn迄今为止仍尚未被成功合成出来。俄罗斯团队计划于2025年开始下一次试验。理论和实验证据表明,Ubn等第八周期元素的合成很可能比之前的元素要困难得多,Ubn甚至可能是目前技术所能合成的最重元素。

Ubn所处的第七种碱土金属的位置表明它会和较轻的同族元素有相似的性质。不过,相对论效应可能会导致Ubn的某些性质与直接用元素周期律推测的性质不同。举个例子,Ubn预计会比更不活泼,反应性反而更像。不过计算显示Ubn的主要氧化态应该仍是碱土金属的+2特征氧化态。

概论

Quick Facts 外部视频链接 ...
外部视频链接
video icon 基于澳大利亚国立大学的计算,核聚变未成功的可视化[2]
Close

超重元素的合成

Thumb
核聚变反应的图示。两个原子核融合成一个,并发射出一个中子。在这一刻,这个反应和用来创造新元素的反应是相似的,唯一可能的区别是它有时会释放几个中子,或者根本不释放中子。

超重元素[a]原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[8]由较重原子核组成的物质会作为靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核都带正电荷,会因为静电排斥力而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[9]施加到粒子束上以加速它们的能量可以使它们的速度达到光速的十分之一。但是,如果施加太多能量,粒子束可能会分崩离析。[9]

不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融为一体约10−20秒,之后再分开(分开后的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[9][10]这是因为在尝试形成单个原子核的过程中,静电排斥力会撕开正在形成的原子核。[9]每一对目标和粒子束的特征在于其截面,即两个原子核彼此接近时发生聚变的概率。[c]这种聚变是量子效应的结果,其中原子核可通过量子穿隧效应克服静电排斥力。如果两个原子核可以在该阶段之后保持靠近,则多个核相互作用会导致能量的重新分配和平衡。[9]

两个原子核聚变产生的原子核处于非常不稳定,[9]被称为复合原子核英语compound nucleus激发态[12]复合原子核为了达到更稳定的状态,可能会直接裂变[13]或是放出一些中子来带走激发能量。如果激发能量太小,无法放出中子,复合原子核就会放出γ射线来带走激发能量。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[13]原子核只有在10−14秒内不衰变IUPAC/IUPAP联合工作小组才会认为它是化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[14][d]

衰变和探测

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会存在于这个粒子束中。[16]在分离室中,新的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]到达半导体探测器英语Semiconductor detector后停止。这时标记撞击探测器的确切位置、能量和到达时间。[16]这个转移需要10−6秒的时间,因此原子核需要存在这么长的时间才能被检测到。[19]若衰变发生,衰变的原子核被再次记录,并测量位置、衰变能量和衰变时间。[16]

原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[20]强核力提供的核结合能以线性增长,而静电排斥力则以原子序数的平方增长。后者增长更快,对重元素和超重元素而言变得越来越重要。[21][22]超重元素理论预测[23]及实际观测到[24]的主要衰变方式,即α衰变自发裂变都是这种排斥引起的。[f]几乎所有会α衰变的核素都有超过210个核子,[26]而主要通过自发裂变衰变的最轻核素有238个核子。[24]有限位势垒在这两种衰变方式中抑制了原子核衰变,但原子核可以隧穿这个势垒,发生衰变。[21][22]

Thumb
基于在杜布纳联合原子核研究所中设置的杜布纳充气反冲分离器,用于产生超重元素的装置方案。在检测器和光束聚焦装置内的轨迹会因为前者的磁偶极英语Magnetic dipole和后者的四极磁体英语Quadrupole magnet而改变。[27]

放射性衰变中常产生α粒子是因为α粒子中的核子平均质量足够小,足以使α粒子有多余能量离开原子核。[28]自发裂变则是由静电排斥力将原子核撕裂而致,会产生各种不同的产物。[22]随着原子序数增加,自发裂变迅速变得重要:自发裂变的部分半衰期从92号元素到102号元素下降了23个数量级,[29]从90号元素到100号元素下降了30个数量级。[30]早期的液滴模型因此表明有约280个核子的原子核的裂变势垒英语Fission barrier会消失,因此自发裂变会立即发生。[22][31]之后的核壳层模型表明有大约300个核子的原子核将形成一个稳定岛,其中的原子核不易发生自发裂变,而是会发生半衰期更长的α衰变。[22][31]随后的发现表明预测存在的稳定岛可能比原先预期的更远,还发现长寿命锕系元素和稳定岛之间的原子核发生变形,获得额外的稳定性。[32]对较轻的超重核素[33]以及那些更接近稳定岛的核素[29]的实验发现它们比先前预期的更难发生自发裂变,表明核壳层效应变得重要。[g]

α衰变由发射出去的α粒子记录,在原子核衰变之前就能确定衰变产物。如果α衰变或连续的α衰变产生了已知的原子核,则可以很容易地确定反应的原始产物。[h]因为连续的α衰变都会在同一个地方发生,所以通过确定衰变发生的位置,可以确定衰变彼此相关。[16]已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[i]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[j]

尝试合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。他们分析这些数据并试图得出结论,确认它确实是由新元素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,且对观察到的现象没有其它解释,就可能在解释数据时出现错误。[k]

合成尝试

2002年,尤里·奥加涅相俄罗斯杜布纳的团队于联合核研究所(JINR)首次发现并观测原子的衰变,[44] 之后打算制作类似的实验:从58Fe244Pu制造Ubn。[45] Ubn同位素的半衰期预计以微秒计。[46][47]

同位素与核特性

能产生Z=120复核的目标、发射体组合

下表包含了各种实验可用于形成复合核的原子序120

More information 目标, 发射体 ...
达到Z=120复核的元素组合
目标 发射体 CN 结果
232Th 70Zn 302Ubn 尚未尝试
238U 64Ni 302Ubn 失败, σ < 94 fb
244Pu 58Fe 302Ubn 失败, σ < 0.4 pb
248Cm 54Cr 302Ubn 尚未尝试
249Cf 50Ti 299Ubn 尚未尝试
257Fm 48Ca 305Ubn 尚未尝试
Close

蒸发截面理论计算

下表列出各种目标-发射体组合,并给出最高的预计产量。

MD = 多面;DNS = 双核系统; σ = 截面

More information 目标, 发射体 ...
目标 发射体 CN 通道(产物) σ max 模型 参考资料
208Pb 88Sr 296Ubn 1n (295Ubn) 70 fb DNS [48]
208Pb 87Sr 295Ubn 1n (294Ubn) 80 fb DNS [48]
208Pb 88Sr 296Ubn 1n (295Ubn) <0.1 fb MD [49]
238U 64Ni 302Ubn 3n (299Ubn) 3 fb MD [49]
238U 64Ni 302Ubn 2n (300Ubn) 0.5 fb DNS [50]
238U 64Ni 302Ubn 4n (298Ubn) 2 ab DNS-AS [51]
244Pu 58Fe 302Ubn 4n (298Ubn) 5 fb MD [49]
244Pu 58Fe 302Ubn 3n (299Ubn) 8 fb DNS-AS [51]
248Cm 54Cr 302Ubn 3n (299Ubn) 10 pb DNS-AS [51]
248Cm 54Cr 302Ubn 4n (298Ubn) 30 fb MD [49]
249Cf 50Ti 299Ubn 4n (295Ubn) 45 fb MD [49]
249Cf 50Ti 299Ubn 3n (296Ubn) 40 fb MD [49]
257Fm 48Ca 305Ubn 3n (302Ubn) 70 fb DNS [50]
Close

参见

注释

参考文献

参考书目

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.