Remove ads

ɡē(英语:Copernicium),是一种人工合成化学元素,其化学符号Cn原子序数为112。是一种放射性极强的超重元素锕系后元素,所有同位素半衰期都很短,非常不稳定,其最长寿的已知同位素为285Cn,半衰期为28秒。不出现在自然界中,只能在实验室内以粒子加速器人工合成。截至目前,科学家用不同的核反应共合成出了75个原子。除了基础科学研究之外,没有任何实际应用。

事实速览 概况, 名称·符号·序数 ...
112Cn
氢(非金属) 氦(惰性气体)
锂(碱金属) 铍(碱土金属) 硼(类金属) 碳(非金属) 氮(非金属) 氧(非金属) 氟(卤素) 氖(惰性气体)
钠(碱金属) 镁(碱土金属) 铝(贫金属) 矽(类金属) 磷(非金属) 硫(非金属) 氯(卤素) 氩(惰性气体)
钾(碱金属) 钙(碱土金属) 钪(过渡金属) 钛(过渡金属) 钒(过渡金属) 铬(过渡金属) 锰(过渡金属) 铁(过渡金属) 钴(过渡金属) 镍(过渡金属) 铜(过渡金属) 锌(过渡金属) 镓(贫金属) 锗(类金属) 砷(类金属) 硒(非金属) 溴(卤素) 氪(惰性气体)
铷(碱金属) 锶(碱土金属) 钇(过渡金属) 锆(过渡金属) 铌(过渡金属) 钼(过渡金属) 𨱏(过渡金属) 钌(过渡金属) 铑(过渡金属) 钯(过渡金属) 银(过渡金属) 镉(过渡金属) 铟(贫金属) 锡(贫金属) 锑(类金属) 碲(类金属) 碘(卤素) 氙(惰性气体)
铯(碱金属) 钡(碱土金属) 镧(镧系元素) 铈(镧系元素) 镨(镧系元素) 钕(镧系元素) 钷(镧系元素) 钐(镧系元素) 铕(镧系元素) 钆(镧系元素) 铽(镧系元素) 镝(镧系元素) 钬(镧系元素) 铒(镧系元素) 铥(镧系元素) 镱(镧系元素) 镏(镧系元素) 铪(过渡金属) 钽(过渡金属) 钨(过渡金属) 铼(过渡金属) 锇(过渡金属) 铱(过渡金属) 铂(过渡金属) 金(过渡金属) 汞(过渡金属) 铊(贫金属) 铅(贫金属) 铋(贫金属) 钋(贫金属) 砈(类金属) 氡(惰性气体)
鍅(碱金属) 镭(碱土金属) 锕(锕系元素) 钍(锕系元素) 镤(锕系元素) 铀(锕系元素) 錼(锕系元素) 钸(锕系元素) 鋂(锕系元素) 锔(锕系元素) 鉳(锕系元素) 鉲(锕系元素) 鑀(锕系元素) 镄(锕系元素) 钔(锕系元素) 锘(锕系元素) 铹(锕系元素) 𬬻(过渡金属) 𬭊(过渡金属) 𬭳(过渡金属) 𬭛(过渡金属) 𬭶(过渡金属) 鿏(预测为过渡金属) 𫟼(预测为过渡金属) 𬬭(预测为过渡金属) (过渡金属) (预测为贫金属) 𫓧(贫金属) 镆(预测为贫金属) 𫟷(预测为贫金属) 鿬(预测为卤素) 鿫(预测为惰性气体)




(Uhb)
𬬭
概况
名称·符号·序数(Copernicium)·Cn·112
元素类别过渡金属
·周期·12·7·d
标准原子质量[285]
电子排布[Rn] 5f14 6d10 7s2
2, 8, 18, 32, 32, 18, 2
<span class="inline-unihan" style="border-bottom: 1px dotted; font-variant: normal;cursor: help; font-family: sans-serif, &#039;FZSongS-Extended&#039;, &#039;FZSongS-Extended(SIP)&#039;, &#039;WenQuanYi Zen Hei Mono&#039;, &#039;BabelStone Han&#039;, &#039;HanaMinB&#039;, &#039;FZSong-Extended&#039;, &#039;Arial Unicode MS&#039;, Code2002, DFSongStd, &#039;STHeiti SC&#039;, unifont, SimSun-ExtB, TH-Tshyn-P0, TH-Tshyn-P1, TH-Tshyn-P2, Jigmo3, Jigmo2, Jigmo, ZhongHuaSongPlane15, ZhongHuaSongPlane02, ZhongHuaSongPlane00, &#039;Plangothic P1&#039;, &#039;Plangothic P2&#039;;" title="字符描述:⿰钅哥 &#10;※如果您看到空白、方块或问号,代表您的系统无法显示该字符。">鿔</span>的电子层(2, 8, 18, 32, 32, 18, 2)
的电子层(2, 8, 18, 32, 32, 18, 2)
历史
发现重离子研究所(1996年)
物理性质
物态液体(预测)[1][2]
密度(接近室温
23.7 g·cm−3
沸点357+112
−108
K84+112
−108
°C183+202
−194
°F
原子性质
氧化态4, 2, 1, 0
(预测[3][4][5]
电离能第一:1154.9 kJ·mol−1
第二:2170.0 kJ·mol−1
第三:3164.7 kJ·mol−1
更多
原子半径147 pm
共价半径122 pm
(预测[6]
杂项
晶体结构六方密排
(预测)[7]
CAS号54084-26-3
同位素
主条目:的同位素
同位素 丰度 半衰期t1/2 衰变
方式 能量MeV 产物
283Cn 人造 3.81 [10] α 9.520[11] 279Ds
SF
285Cn 人造 30  α 9.15, 9.03? 281Ds
关闭

元素周期表中,位于d区,是第7周期第12族的成员。的化学反应显示,它是一种极易挥发的金属,在标准状况下可能是挥发性液体甚至气体,并似乎具有惰性气体的属性,和同族的相似,完全具有12族中的最重元素的应有属性。

计算显示,的某些性质和第12族中较轻的同族元素有较大的差异。最显著的不同就是会在失去7s电子层前先失去两个6d层的电子。因此,根据相对论效应,会是一种过渡金属。通过计算,科学家还发现能呈稳定的+4氧化态,而汞则仅能在极端条件下呈+4态,锌和镉则不能呈+4态。科学家也精确地预测了从游离态到化合态所需的能量。

位于德国达姆施塔特重离子研究所(GSI),由西格・霍夫曼英语Sigurd Hofmann维克托·尼诺夫领导的研究团队在1996年首次合成出。其名称得自提出日心说波兰天文学家尼古拉·哥白尼

Remove ads

概论

事实速览 外部视频链接 ...
外部视频链接
video icon 基于澳大利亚国立大学的计算,核聚变未成功的可视化[12]
关闭

超重元素的合成

Thumb
核聚变反应的图示。两个原子核融合成一个,并发射出一个中子。这个反应和用来创造新元素的反应相似,唯一可能的区别是它有时会释放几个中子,或者根本不释放中子。

超重元素[a]原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[18]由较重原子核组成的物质会作为靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核都带正电荷,会因为静电排斥力而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[19]施加到粒子束上以加速它们的能量可以使它们的速度达到光速的十分之一。但是,如果施加太多能量,粒子束可能会分崩离析。[19]

不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融为一体约10−20秒,之后再分开(分开后的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[19][20]这是因为在尝试形成单个原子核的过程中,静电排斥力会撕开正在形成的原子核。[19]每一对目标和粒子束的特征在于其截面,即两个原子核彼此接近时发生聚变的概率。[c]这种聚变是量子效应的结果,其中原子核可通过量子穿隧效应克服静电排斥力。如果两个原子核可以在该阶段之后保持靠近,则多个核相互作用会导致能量的重新分配和平衡。[19]

两个原子核聚变产生的原子核处于非常不稳定,[19]被称为复合原子核英语compound nucleus激发态[22]复合原子核为了达到更稳定的状态,可能会直接裂变[23]或是放出一些中子来带走激发能量。如果激发能量太小,无法放出中子,复合原子核就会放出γ射线来带走激发能量。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[23]原子核只有在10−14秒内不衰变IUPAC/IUPAP联合工作小组才会认为它是化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[24][d]

衰变和探测

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会存在于这个粒子束中。[26]在分离室中,新的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]到达半导体探测器英语Semiconductor detector后停止。这时标记撞击探测器的确切位置、能量和到达时间。[26]这个转移需要10−6秒的时间,因此原子核需要存在这么长的时间才能被检测到。[29]若衰变发生,衰变的原子核被再次记录,并测量位置、衰变能量和衰变时间。[26]

原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[30]强核力提供的核结合能以线性增长,而静电排斥力则以原子序数的平方增长。后者增长更快,对重元素和超重元素而言变得越来越重要。[31][32]超重元素理论预测[33]及实际观测到[34]的主要衰变方式,即α衰变自发裂变都是这种排斥引起的。[f]几乎所有会α衰变的核素都有超过210个核子,[36]而主要通过自发裂变衰变的最轻核素有238个核子。[34]有限位势垒在这两种衰变方式中抑制了原子核衰变,但原子核可以隧穿这个势垒,发生衰变。[31][32]

Thumb
基于在杜布纳联合原子核研究所中设置的杜布纳充气反冲分离器,用于产生超重元素的装置方案。在检测器和光束聚焦装置内的轨迹会因为前者的磁偶极英语Magnetic dipole和后者的四极磁体英语Quadrupole magnet而改变。[37]

放射性衰变中常产生α粒子是因为α粒子中的核子平均质量足够小,足以使α粒子有多余能量离开原子核。[38]自发裂变则是由静电排斥力将原子核撕裂而致,会产生各种不同的产物。[32]随着原子序数增加,自发裂变迅速变得重要:自发裂变的部分半衰期从92号元素到102号元素下降了23个数量级,[39]从90号元素到100号元素下降了30个数量级。[40]早期的液滴模型因此表明有约280个核子的原子核的裂变势垒英语Fission barrier会消失,因此自发裂变会立即发生。[32][41]之后的核壳层模型表明有大约300个核子的原子核将形成一个稳定岛,其中的原子核不易发生自发裂变,而是会发生半衰期更长的α衰变。[32][41]随后的研究发现预测存在的稳定岛可能比原先预期的更远,还发现长寿命锕系元素和稳定岛之间的原子核发生变形,获得额外的稳定性。[42]对较轻的超重核素[43]以及那些更接近稳定岛的核素[39]的实验发现它们比先前预期的更难发生自发裂变,表明核壳层效应变得重要。[g]

α衰变由发射出去的α粒子记录,在原子核衰变之前就能确定衰变产物。如果α衰变或连续的α衰变产生了已知的原子核,则可以很容易地确定反应的原始产物。[h]因为连续的α衰变都会在同一个地方发生,所以通过确定衰变发生的位置,可以确定衰变彼此相关。[26]已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[i]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[j]

尝试合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。他们分析这些数据并试图得出结论,确认它确实是由新元素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,且对观察到的现象没有其它解释,就可能在解释数据时出现错误。[k]
Remove ads

历史

发现

位于德国达姆施塔特重离子研究所(GSI),由西格·霍夫曼和维克托·尼诺夫领导的研究团队在1996年首次合成出元素。他们在重离子加速器中用高速运行的70原子束轰击208目标体,获得一颗半衰期仅为0.24毫秒的277Cn原子(另一颗被击散)。制取该元素的核反应方程式为:

2002年重离子研究所重复相同的实验,再次得到一个原子。2004年,日本一家研究机构也合成出了两个原子[54]

Remove ads

名称

国际纯化学与应用化学联盟(IUPAC)在经过长期验证后,于2009年6月正式承认第112号元素的合成,并随后邀请霍夫曼领导的团队为112号元素提出一个永久名称。2009年7月17日,该团队提议将112号元素命名为Copernicium,缩写Cp,以纪念著名天文学家哥白尼(Copernicus)。他们称,将其命名为Cp的原因,是由哥白尼所提出的日心说与化学中的原子结构(卢瑟福模型)有很多相似之处。

Cp这个名称当时未获得IUPAC的正式承认。IUPAC在此后6个月的时间内进行审议,听取科学界的意见,并于2010年1月公布审议的结果。[55]2009年9月,《自然》杂志上的一篇文章[56]指出符号Cp曾用于元素(Lutetium)的旧称(Cassiopeium),现在在配位化学中亦用于指环戊二烯Cyclopentadiene)配位体。根据目前IUPAC对元素的命名规则,新元素的提议名称是不得与其他元素名称或符号重复的。考虑到上述情况,为了避免歧义,IUPAC已把提议中的符号Cp改为CnCopernicium)。[57]

2010年2月19日,德国重离子研究所正式宣布,经国际纯粹与应用化学联合会确认,由该所人工合成的第112号化学元素从即日起获正式名称“Copernicium”,相应的元素符号为“Cn”。[58]

在台湾,此元素之中文名称由国立编译馆化学名词审议委员会和中国化学会名词委员会开会讨论后决定命名为[59]

中华人民共和国全国科学技术名词审定委员会于2012年1月确定了(读音同“哥”)的简体中文名称,获国家语言文字工作委员会批准后进入国家规范用字。[60][61]

Remove ads

同位素与核特性

更多信息 同位素, 半衰期[l] ...
的同位素列表
同位素 半衰期[l] 衰变方式 发现年份 发现方法
数值 来源
277Cn 0.79 ms [34] α 1996年 208Pb(70Zn,n)
281Cn 0.18 s [62] α 2010年 285Fl(—,α)
282Cn 0.83 ms [10] SF 2003年 290Lv(—,2α)
283Cn 3.81 s [10] α, SF, EC? 2003年 287Fl(—,α)
284Cn 121 ms [63] α, SF 2004年 288Fl(—,α)
285Cn 30 s [34] α 1999年 289Fl(—,α)
285mCn[m] 15 s [34] α 2012年 293mLv(—,2α)
286Cn[m] 8.45 s [64] SF 2016年 294Lv(—,2α)
关闭

目前已知的同位素共有7个,质量数分别为277和281-286,此外-285还有已知但未确认的亚稳态[65]的同位素全部都具有极高的放射性半衰期极短,非常不稳定,且较重的同位素大多比较轻的同位素来的稳定,其中最长寿的同位素为-285,半衰期为28秒。除了-285外,其他寿命较长的同位素有-283(半衰期4秒)和未经证实的-285m(15秒)及-286(8.45秒),剩下的同位素半衰期皆短于1秒。大多数同位素主要发生α衰变,有些则会发生自发裂变,此外-283也有机率发生电子捕获[66]

根据预测,更重的未发现同位素-291和-293可能具有相对极长的半衰期,长达数十年以上,因为理论上它们预计位于稳定岛的中心附近,并且有机会在超新星R-过程中生成,并在宇宙射线中检测到,尽管它们的含量大约仅为的10-12倍。[67]

Remove ads

化学属性

推算的化学属性

氧化态

是6d系的最后一个过渡金属,是元素周期表中12族最重的元素,位于下面。科学家预测,与其他较轻的12族元素在属性上有显著差异。由于7s电子轨域的稳定加上相对论效应,6d轨域较不稳定性,因此Cn2+离子的电子排布很可能是[Rn]5f146d87s2,这和同族元素是不同的。在水溶液中,很可能形成+2和+4氧化态,后者更稳定。在较轻的12族元素中,+2氧化态是最常见的,而只有汞能呈+4氧化态,但极少见。唯一一个已知的四价汞化合物(四氟化汞,HgF4)也只能在极端条件下存在。[68] 类似的化合物CnF4、CnO2预计将更加稳定。双原子离子Hg2+
2
中汞具有+1态,但是Cn2+
2
离子预计将不稳定,甚至不存在。[69]

实验化学

原子气态

有基态电子排布为[Rn]5f146d107s2,所以根据构造原理应该属于周期表的12族。因此,它的属性应表现为汞的较重同族元素,可与等贵金属形成二元化合物的化学实验主要研究在不同温度下在金箔表面的吸附作用,从而计算出吸附焓值。由于7s轨域电子相对稳定,表现出类似氡的属性。实验同时形成了汞和氡的放射性同位素,这使科学家能够比较这些元素的吸附特性。

最初的化学实验使用了238U(48Ca,3n)283Cn反应。实验检测到目标同位素的自发裂变,半衰期为5分钟。分析数据表明,的挥发性比汞高,并似乎具有惰性气体的属性。然而,由于未能确定283Cn同位素的发现,因此科学家对这些化学实验结果是持著疑问的。2006年4月至5月,Flerov核研究实验室和保罗谢尔研究所的联合团队在联合核研究所进行了𫓧的合成实验:242Pu(48Ca,3n)287Fl,并在衰变产物中对283Cn进行研究。该实验明确探测到两个283Cn原子,并发现和金会产生弱金属-金属键。这意味著是具高挥发性的汞同类物英语congener (chemistry),明确属于12族。

2007年4月,科学家重复进行了这条反应,又合成了三个283Cn原子。该实验证实了的吸附特性,结果表示完全具有12族中的最重元素的应有属性。[4]

注释

参考资料

参考书目

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads