Loading AI tools
原子序数为74的化学元素 来自维基百科,自由的百科全书
钨(英语:Tungsten[4]), 是一种化学元素,其化学符号为W(源自德语:Wolfram [5][6]),原子序数为74,原子量为u。钨非常硬,是钢灰色至白色的 183.84 过渡金属。钨是卑金属,在自然界大多与其他元素以化合物的形态存在,而不是单独存在。钨在西元1781年被发现且命名,在1783年第一次成功分离出钨。黑钨矿以及白钨矿是钨的重要矿石。
此条目可能包含原创研究。 (2019年6月5日) |
钨元素具有极高稳定性,在所有元素中熔点最高(3422 °C,6192 °F,3695 K)、沸点最高(5930 °C,10706 °F,6203 K)[7]。密度为19.25 g·cm−3,与铀与金的密度相当,比铅的密度还高1.7倍[8]。多晶钨本身坚硬易脆[9][10](在标准条件下,未与其他物质结合时),难以进行加工使用。然而,若是纯单晶钨,则具有延展性,可使用钢锯切割[11]。
钨合金有许多的应用,包含灯泡灯丝、X射线管、钨极气体保护电弧焊、超合金和辐射防护屏蔽。钨的高硬度和高密度的特性,可用于军事用途上,如穿甲弹。钨化合物也经常在工业上作为催化剂使用。 钨是第三过渡族中唯一一个其存在于一些少数细菌与古细菌中的金属。是任何生物体内不可或缺元素中最重的一个元素[12]。然而,钨会干扰钼和铜的代谢[13][14],对于一般常看到的生物体是具有一些毒性的。
瑞典化学家最早由白钨矿中分离出钨酸,因此根据白钨矿这种矿石的瑞典古名,将这种元素以瑞典语:tungsten(这个字可被分解为tung sten,字面意义为重石)命名。在英文、法文等语言中,都使用这个名称(除了北欧五国)。但因为tungsten在瑞典文中也是白钨矿的名称,为了避免混淆,瑞典采用volfram作为元素的名称。
在欧洲其他国家,主要以德文及各斯拉夫语为代表,则使用德语:wolfram或volfram,在北欧五国也使用这个名称。这个名称来自黑钨矿(Wolframite)这个矿石的名字[15]。符号“W”及中文“钨”的来源都来自德文Wolfram。
黑钨矿(Wolframite)的名字来自德文 "wolf rahm" ("wolf soot"狼煤烟 或 "wolf cream"狼奶油),于1747年由约翰‧嘎尔修特‧瓦莱里乌斯给定。这来自于拉丁文 "lupi spuma",为格奥尔格·阿格里科拉在1546年对这个元素的称呼,英文翻译为“狼的白沫”,指的是这个矿物在萃取的过程消耗大量的锡。
纯钨是钢灰色至锡白色的坚硬金属,通常很脆而不易金属加工,非常纯的钨可以维持它的硬度(高于许多其他金属),且具有延展性,易于加工。钨的加工方法有锻造、拉伸和冲击。钨常常以烧结的方法制成。
在所有纯金属中,钨的熔点最高(3415℃,6192 °F)蒸汽压最低,(温度1650℃,3000 °F以上),强度最高[16]。虽然碳相较于钨能在较高的温度下维持固态,但是碳在气压下容易升华而非熔化,因此,它不具有熔点。钨拥有最低的热膨胀系数。它的低热膨胀系数、高熔点,以及高抗张强度,都源自于钨原子间的强金属键。少量的钨与钢合金,能够大大提升它的硬度。
钨以两种晶体惯态结构存在:α和β。前者以立方体心堆积,是较稳定的组成。后者则是亚稳定的A15 立方体堆积,但因为非平衡合成或杂质造成的稳定性,可以与周围条件下的α相共存。相较于α相拥有等长的晶粒,β相展现圆柱状的晶性。α相的电阻率只有β相的三分之一,且具有远低于β相的超导转移温度(临界点TC):ca. 0.015 K vs. 1–4 K;混合两者可以得到中间值得临界温度TC。以其他金属与钨合金也可以提高它的临界温度TC,此类钨合金可以用于低温超导电路。
天然钨由四种稳定同位素(182W、183W、184W 以及 186W)以及一种长寿命的放射性同位素(180W)组成。理论上,这五种同位素都能够借由α衰变成72号元素铪,但只有在180W中观测到衰变,半衰期为 ±0.2)×1018年。 (1.8[17][18]平均来说,一克的180W在一年里会有两次α衰变[19]。其它同位素尚未被观察到天然衰变,因此它们的半衰期至少为4 × 1021年。
此外,还有另外30种钨的人造放射性同位素已被确认,其中最稳定的有半衰期121.2天的181W、半衰期75.1天的185W、半衰期69.4天的188W、半衰期21.6天的178W以及半衰期23.72小时的187W[19]。剩下的放射性同位素半衰期都不超过三小时,其中大部份更少于八分钟[19]。钨也有11种同核异构体,其中最稳定的是半衰期6.4分钟的179mW。
钨元素可以阻隔酸和碱金属的腐蚀。但在空气中加热时表面易形成厚度不均的彩色氧化层
钨最常见的氧化态是+6价,但它也有-2至+6之间的其他氧化态。最常见的氧化物是黄色的三氧化钨(WO3),它可以在碱性的水中溶化形成WO2−
4
碳与粉状钨加热可以制成钨的碳化物(W2C和WC),W
2C通常不易发生化学反应,但容易和氯产生六氯化钨(WCl6)。
在中性或酸性水溶液中,钨可以形成异性聚合酸以及多原子离子酸,随著钨酸盐与酸作用,先形成可溶的亚稳定”仲钨酸A”阴离子W
7O6–
24,接著转变成溶解度较低的”仲钨酸B“阴离子 H
2W
12O10–
42[20],最后稳定态达成,更酸化成易溶的偏钨酸根阴离子H
2W
12O6–
40。偏钨酸根离子以对称的十二钨酸八面体存在(Keggin structure)。许多其他的多原子离子酸以亚稳定种类存在,包括以磷取代偏钨酸根中心的两个氢原子,制成多变的异性聚合酸,例如磷钨酸。
钨的应用非常广泛,最常见的是碳化钨(WC)。这种硬质材料用在金属加工、采矿、采油和建筑工业中作为耐用材料。此外在电灯泡和真空管中钨丝的应用也很广。钨还常用作电极。钨可以拉成很细的丝,而且熔点非常高。它的其它应用包括:
其它:氧化钨被用在陶瓷釉中,钙或镁钨常用在荧光粉中。在核物理和核医学中钨晶体被用作闪烁探测器。钨被用作X射线目标和在电子炉中作为加热器。含钨的盐被用在化学和皮革工业中。青铜色的氧化钨被用在绘画中。由于它的低敏感性碳化钨被用作首饰,此外由于它非常硬它不会像其它擦光的金属被划痕。有些乐器的铉使用钨丝。
1781年,瑞典化学家卡尔·威廉·舍勒发现,使用白钨矿,可以制作出一种新的酸,即钨酸。当时卡尔·威廉·舍勒与其友人托尔贝恩·贝里曼皆相信在钨酸中一定可以进一步分解出一种新的化学元素。1783年胡塞·德卢亚尔和浮士图·德卢亚尔兄弟发现从黑钨矿可以获得同样的酸。同年他们使用木炭还原钨酸获得了钨,因此他们被公认为钨的发现者[他们称之为"wolfram" 或 "volfram"][21][22]。
钨的战略价值在二十世纪早期受到注意。英国当局在1912年把卡罗克矿坑(Carrock mine)从德国拥有的坎布里亚矿业公司解放出来,还有在一次世界大战期间限制德国其他的取得来源。在二次世界大战,钨在政治交涉上扮演更加重要的角色。钨在欧洲的主要来源是葡萄牙,当时受到双方的压力,因为在帕纳什凯拉沉积的钨矿。钨抗高温的特性,其硬度和密度,以及强化合金的功效让它成为军工业的重要材料,用作武器和设备的成分与制作过程(例如碳化钨切割工具用于机械加工钢铁)。
还原酶使用钨蝶呤。
虽然有人怀疑钨会导致白血病,但是至今为止缺乏有说服力的证明。
黑钨矿、白钨矿、钨铁矿等矿物含钨。重要的钨矿位于玻利维亚、美国加利福尼亚州和科罗拉多州、加拿大、中国、越南、葡萄牙、俄罗斯以及韩国。中国出产全世界钨的75%。通过使用碳还原钨的氧化物获得纯的金属。
全世界钨的贮藏总量估计为700万吨,其中约30%是黑钨矿,70%是白钨矿。但是目前大多数这些矿藏无法经济性地开采。按照目前的消耗量这些矿藏只够使用约140年。另一个获得钨的方法是回收。回收的钨比钨矿含量高,事实上利润很高。
2017年中国、越南与俄罗斯分别供应了79,000、7,200、3,100吨。加拿大在2015年底停止生产因为其唯一的钨矿矿坑关闭。越南在2010年左右因为其精炼工程的重大优化,大幅增加其产出,产量超过俄罗斯和玻利维亚。
中国仍然不只是全世界钨制品最大的制造者,也是最大的出口和消费者。钨的制造在中国外因需求上升而逐渐增加。同时中国的供给受到中国政府的严格管制,来对抗非法采矿和过多来自采矿与精炼过程的污染。
因为在刚果共和国的不道德采矿行为,该国生产的钨矿被认为是冲突矿石。
在英国达特穆尔的边缘有大量的钨矿沉积,在一次和二次世界大战期间有利用。随著钨的价格上升,这个矿坑在2014年重新开张,但在2018年关闭。
钨最常见的氧化态是+6价,但它也有-1至+6之间的氧化状态[23]。最常见的氧化物是黄色的三氧化钨,WO3,它可以在碱性的水中溶化形成WO42−。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.